有助于大脑皮层高频振荡的副发光素表达 GABA 能中间神经元的生理特征

Katarina D. Milicevic , Brianna L. Barbeau , Darko D. Lovic , Aayushi A. Patel , Violetta O. Ivanova , Srdjan D. Antic
{"title":"有助于大脑皮层高频振荡的副发光素表达 GABA 能中间神经元的生理特征","authors":"Katarina D. Milicevic ,&nbsp;Brianna L. Barbeau ,&nbsp;Darko D. Lovic ,&nbsp;Aayushi A. Patel ,&nbsp;Violetta O. Ivanova ,&nbsp;Srdjan D. Antic","doi":"10.1016/j.crneur.2023.100121","DOIUrl":null,"url":null,"abstract":"<div><p>Parvalbumin-expressing (PV+) inhibitory interneurons drive gamma oscillations (30–80 Hz), which underlie higher cognitive functions. In this review, we discuss two groups/aspects of fundamental properties of PV+ interneurons. In the first group (dubbed <em>Before Axon</em>), we list properties representing optimal synaptic integration in PV+ interneurons designed to support fast oscillations. For example: [i] Information can neither enter nor leave the neocortex without the engagement of fast PV+ -mediated inhibition; [ii] Voltage responses in PV+ interneuron dendrites integrate linearly to reduce impact of the fluctuations in the afferent drive; and [iii] Reversed somatodendritic Rm gradient accelerates the time courses of synaptic potentials arriving at the soma. In the second group (dubbed <em>After Axon</em>), we list morphological and biophysical properties responsible for (a) short synaptic delays, and (b) efficient postsynaptic outcomes. For example: [i] Fast-spiking ability that allows PV+ interneurons to outpace other cortical neurons (pyramidal neurons). [ii] Myelinated axon (which is only found in the PV+ subclass of interneurons) to secure fast-spiking at the initial axon segment; and [iii] Inhibitory autapses – autoinhibition, which assures brief biphasic voltage transients and supports postinhibitory rebounds. Recent advent of scientific tools, such as viral strategies to target PV cells and the ability to monitor PV cells via in vivo imaging during behavior, will aid in defining the role of PV cells in the CNS. Given the link between PV+ interneurons and cognition, in the future, it would be useful to carry out physiological recordings in the PV+ cell type selectively and characterize if and how psychiatric and neurological diseases affect initiation and propagation of electrical signals in this cortical sub-circuit. Voltage imaging may allow fast recordings of electrical signals from many PV+ interneurons simultaneously.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"6 ","pages":"Article 100121"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X23000499/pdfft?md5=9e950352f24d5acad413acd54cc81f76&pid=1-s2.0-S2665945X23000499-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex\",\"authors\":\"Katarina D. Milicevic ,&nbsp;Brianna L. Barbeau ,&nbsp;Darko D. Lovic ,&nbsp;Aayushi A. Patel ,&nbsp;Violetta O. Ivanova ,&nbsp;Srdjan D. Antic\",\"doi\":\"10.1016/j.crneur.2023.100121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Parvalbumin-expressing (PV+) inhibitory interneurons drive gamma oscillations (30–80 Hz), which underlie higher cognitive functions. In this review, we discuss two groups/aspects of fundamental properties of PV+ interneurons. In the first group (dubbed <em>Before Axon</em>), we list properties representing optimal synaptic integration in PV+ interneurons designed to support fast oscillations. For example: [i] Information can neither enter nor leave the neocortex without the engagement of fast PV+ -mediated inhibition; [ii] Voltage responses in PV+ interneuron dendrites integrate linearly to reduce impact of the fluctuations in the afferent drive; and [iii] Reversed somatodendritic Rm gradient accelerates the time courses of synaptic potentials arriving at the soma. In the second group (dubbed <em>After Axon</em>), we list morphological and biophysical properties responsible for (a) short synaptic delays, and (b) efficient postsynaptic outcomes. For example: [i] Fast-spiking ability that allows PV+ interneurons to outpace other cortical neurons (pyramidal neurons). [ii] Myelinated axon (which is only found in the PV+ subclass of interneurons) to secure fast-spiking at the initial axon segment; and [iii] Inhibitory autapses – autoinhibition, which assures brief biphasic voltage transients and supports postinhibitory rebounds. Recent advent of scientific tools, such as viral strategies to target PV cells and the ability to monitor PV cells via in vivo imaging during behavior, will aid in defining the role of PV cells in the CNS. Given the link between PV+ interneurons and cognition, in the future, it would be useful to carry out physiological recordings in the PV+ cell type selectively and characterize if and how psychiatric and neurological diseases affect initiation and propagation of electrical signals in this cortical sub-circuit. Voltage imaging may allow fast recordings of electrical signals from many PV+ interneurons simultaneously.</p></div>\",\"PeriodicalId\":72752,\"journal\":{\"name\":\"Current research in neurobiology\",\"volume\":\"6 \",\"pages\":\"Article 100121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665945X23000499/pdfft?md5=9e950352f24d5acad413acd54cc81f76&pid=1-s2.0-S2665945X23000499-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current research in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665945X23000499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665945X23000499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表达副发光素(PV+)的抑制性中间神经元驱动伽马振荡(30-80 Hz),而伽马振荡是高级认知功能的基础。在这篇综述中,我们将讨论 PV+中间神经元的两组/两方面的基本特性。在第一组中(被称为 "轴突之前"),我们列出了代表 PV+中间神经元中旨在支持快速振荡的最佳突触整合的特性。例如[i]如果没有 PV+ 介导的快速抑制的参与,信息既不能进入也不能离开新皮质;[ii]PV+ 神经元树突中的电压反应线性整合,以减少传入驱动中波动的影响;[iii]反向体节树突 Rm 梯度加速了到达体节的突触电位的时间进程。在第二组(称为 "轴突后")中,我们列出了造成(a)短突触延迟和(b)高效突触后结果的形态学和生物物理特性。例如[i] 快速尖峰突触能力使 PV+中间神经元的速度超过其他皮质神经元(锥体神经元)。[髓鞘轴突(仅存在于 PV+ 亚类中间神经元中)确保在最初轴突区段的快速尖峰突触;以及 [iii] 抑制性自体突触--自体抑制,确保短暂的双相瞬态电压并支持抑制后反弹。最近出现的一些科学工具,如针对中枢视网膜细胞的病毒策略,以及在行为过程中通过体内成像监测中枢视网膜细胞的能力,将有助于确定中枢视网膜细胞在中枢神经系统中的作用。鉴于 PV+ 中间神经元与认知之间的联系,将来有必要有选择性地对 PV+ 细胞类型进行生理记录,并确定精神和神经疾病是否以及如何影响这一皮质子回路中电信号的启动和传播。电压成像可以同时快速记录许多 PV+中间神经元的电信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex

Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex

Parvalbumin-expressing (PV+) inhibitory interneurons drive gamma oscillations (30–80 Hz), which underlie higher cognitive functions. In this review, we discuss two groups/aspects of fundamental properties of PV+ interneurons. In the first group (dubbed Before Axon), we list properties representing optimal synaptic integration in PV+ interneurons designed to support fast oscillations. For example: [i] Information can neither enter nor leave the neocortex without the engagement of fast PV+ -mediated inhibition; [ii] Voltage responses in PV+ interneuron dendrites integrate linearly to reduce impact of the fluctuations in the afferent drive; and [iii] Reversed somatodendritic Rm gradient accelerates the time courses of synaptic potentials arriving at the soma. In the second group (dubbed After Axon), we list morphological and biophysical properties responsible for (a) short synaptic delays, and (b) efficient postsynaptic outcomes. For example: [i] Fast-spiking ability that allows PV+ interneurons to outpace other cortical neurons (pyramidal neurons). [ii] Myelinated axon (which is only found in the PV+ subclass of interneurons) to secure fast-spiking at the initial axon segment; and [iii] Inhibitory autapses – autoinhibition, which assures brief biphasic voltage transients and supports postinhibitory rebounds. Recent advent of scientific tools, such as viral strategies to target PV cells and the ability to monitor PV cells via in vivo imaging during behavior, will aid in defining the role of PV cells in the CNS. Given the link between PV+ interneurons and cognition, in the future, it would be useful to carry out physiological recordings in the PV+ cell type selectively and characterize if and how psychiatric and neurological diseases affect initiation and propagation of electrical signals in this cortical sub-circuit. Voltage imaging may allow fast recordings of electrical signals from many PV+ interneurons simultaneously.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信