Tabitha A Hughes, Randy T Larsen, Kent R Hersey, Madelon van de Kerk, Brock R McMillan
{"title":"评估基于运动的方法,以估计骡鹿的产仔频率和时间。","authors":"Tabitha A Hughes, Randy T Larsen, Kent R Hersey, Madelon van de Kerk, Brock R McMillan","doi":"10.1186/s40462-024-00450-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Information on reproduction of harvested species such as mule deer (Odocoileus hemionus) is vital for conservation and management. Furthermore, parturition in ungulates may be detected using patterns of movement logged by GPS transmitters. Several movement-based methods have been developed to detect parturition in ungulates including the Peterson method, behavioral change point analysis (BCPA), rolling minimum convex polygons (rMCP), individual-based method (IBM), and population-based method (PBM). Our objectives were to (1) test the accuracy and the precision of each previously described method and (2) develop an improved method optimized for mule deer that incorporated aspects of the other methods.</p><p><strong>Methods: </strong>We determined parturition timing and status for female mule deer fitted with GPS collars and implanted with vaginal implant transmitters (VITs). We used movement patterns before and after parturition to set movement thresholds for each movement-based method. Following model training, we used location and birth date data from an external dataset to test the effectiveness of each movement-based method. Additionally, we developed a novel method for detecting parturition called the analysis of parturition indicators (API). We used two regression analyses to determine the accuracy and precision of estimates generated by each method.</p><p><strong>Results: </strong>The six methods we employed varied in accuracy, with the API, rMCP, and BCPA being most accurate. Precision also varied among methods, with the API, rMCP, and PBM generating the most precise estimates of parturition dates. The API and the rMCP performed similarly and better overall than any of the other existing methods.</p><p><strong>Conclusions: </strong>We found that movement-based methods could be used to accurately and precisely detect parturition in mule deer. Further, we determined that the API and rMCP methods had the greatest overall success at detecting parturition in mule deer. The relative success of the API and rMCP may be attributed to the fact that both methods use home range size to detect parturition and are validated using known parturition dates of collared deer. We present the API as an efficient method of estimating birth status and timing of parturition of mule deer fitted with GPS transmitters, as well as affirm the effectiveness of a previously developed method, rMCP.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"12 1","pages":"6"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799437/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating movement-based methods for estimating the frequency and timing of parturition in mule deer.\",\"authors\":\"Tabitha A Hughes, Randy T Larsen, Kent R Hersey, Madelon van de Kerk, Brock R McMillan\",\"doi\":\"10.1186/s40462-024-00450-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Information on reproduction of harvested species such as mule deer (Odocoileus hemionus) is vital for conservation and management. Furthermore, parturition in ungulates may be detected using patterns of movement logged by GPS transmitters. Several movement-based methods have been developed to detect parturition in ungulates including the Peterson method, behavioral change point analysis (BCPA), rolling minimum convex polygons (rMCP), individual-based method (IBM), and population-based method (PBM). Our objectives were to (1) test the accuracy and the precision of each previously described method and (2) develop an improved method optimized for mule deer that incorporated aspects of the other methods.</p><p><strong>Methods: </strong>We determined parturition timing and status for female mule deer fitted with GPS collars and implanted with vaginal implant transmitters (VITs). We used movement patterns before and after parturition to set movement thresholds for each movement-based method. Following model training, we used location and birth date data from an external dataset to test the effectiveness of each movement-based method. Additionally, we developed a novel method for detecting parturition called the analysis of parturition indicators (API). We used two regression analyses to determine the accuracy and precision of estimates generated by each method.</p><p><strong>Results: </strong>The six methods we employed varied in accuracy, with the API, rMCP, and BCPA being most accurate. Precision also varied among methods, with the API, rMCP, and PBM generating the most precise estimates of parturition dates. The API and the rMCP performed similarly and better overall than any of the other existing methods.</p><p><strong>Conclusions: </strong>We found that movement-based methods could be used to accurately and precisely detect parturition in mule deer. Further, we determined that the API and rMCP methods had the greatest overall success at detecting parturition in mule deer. The relative success of the API and rMCP may be attributed to the fact that both methods use home range size to detect parturition and are validated using known parturition dates of collared deer. We present the API as an efficient method of estimating birth status and timing of parturition of mule deer fitted with GPS transmitters, as well as affirm the effectiveness of a previously developed method, rMCP.</p>\",\"PeriodicalId\":54288,\"journal\":{\"name\":\"Movement Ecology\",\"volume\":\"12 1\",\"pages\":\"6\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799437/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Movement Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40462-024-00450-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-024-00450-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Evaluating movement-based methods for estimating the frequency and timing of parturition in mule deer.
Background: Information on reproduction of harvested species such as mule deer (Odocoileus hemionus) is vital for conservation and management. Furthermore, parturition in ungulates may be detected using patterns of movement logged by GPS transmitters. Several movement-based methods have been developed to detect parturition in ungulates including the Peterson method, behavioral change point analysis (BCPA), rolling minimum convex polygons (rMCP), individual-based method (IBM), and population-based method (PBM). Our objectives were to (1) test the accuracy and the precision of each previously described method and (2) develop an improved method optimized for mule deer that incorporated aspects of the other methods.
Methods: We determined parturition timing and status for female mule deer fitted with GPS collars and implanted with vaginal implant transmitters (VITs). We used movement patterns before and after parturition to set movement thresholds for each movement-based method. Following model training, we used location and birth date data from an external dataset to test the effectiveness of each movement-based method. Additionally, we developed a novel method for detecting parturition called the analysis of parturition indicators (API). We used two regression analyses to determine the accuracy and precision of estimates generated by each method.
Results: The six methods we employed varied in accuracy, with the API, rMCP, and BCPA being most accurate. Precision also varied among methods, with the API, rMCP, and PBM generating the most precise estimates of parturition dates. The API and the rMCP performed similarly and better overall than any of the other existing methods.
Conclusions: We found that movement-based methods could be used to accurately and precisely detect parturition in mule deer. Further, we determined that the API and rMCP methods had the greatest overall success at detecting parturition in mule deer. The relative success of the API and rMCP may be attributed to the fact that both methods use home range size to detect parturition and are validated using known parturition dates of collared deer. We present the API as an efficient method of estimating birth status and timing of parturition of mule deer fitted with GPS transmitters, as well as affirm the effectiveness of a previously developed method, rMCP.
Movement EcologyAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍:
Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.