{"title":"测试人工智能艺术工具在城市设计方面的能力。","authors":"Connor Phillips, Junfeng Jiao, Emmalee Clubb","doi":"10.1109/MCG.2024.3356169","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the performance of three artificial intelligence (AI) image synthesis models, Dall-E 2, Stable Diffusion, and Midjourney, in generating urban design imagery based on scene descriptions. A total of 240 images were generated and evaluated by two independent professional evaluators using an adapted sensibleness and specificity average metric. The results showed significant differences between the three AI models, as well as differing scores across urban scenes, suggesting that some projects and design elements may be more challenging for AI art generators to represent visually. Analysis of individual design elements showed high accuracy in common features like skyscrapers and lawns, but less frequency in depicting unique elements such as sculptures and transit stops. AI-generated urban designs have potential applications in the early stages of exploration when rapid ideation and visual brainstorming are key. Future research could broaden the style range and include more diverse evaluative metrics. The study aims to guide the development of AI models for more nuanced and inclusive urban design applications, enhancing tools for architects and urban planners.</p>","PeriodicalId":55026,"journal":{"name":"IEEE Computer Graphics and Applications","volume":"PP ","pages":"37-45"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing the Capability of AI Art Tools for Urban Design.\",\"authors\":\"Connor Phillips, Junfeng Jiao, Emmalee Clubb\",\"doi\":\"10.1109/MCG.2024.3356169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to evaluate the performance of three artificial intelligence (AI) image synthesis models, Dall-E 2, Stable Diffusion, and Midjourney, in generating urban design imagery based on scene descriptions. A total of 240 images were generated and evaluated by two independent professional evaluators using an adapted sensibleness and specificity average metric. The results showed significant differences between the three AI models, as well as differing scores across urban scenes, suggesting that some projects and design elements may be more challenging for AI art generators to represent visually. Analysis of individual design elements showed high accuracy in common features like skyscrapers and lawns, but less frequency in depicting unique elements such as sculptures and transit stops. AI-generated urban designs have potential applications in the early stages of exploration when rapid ideation and visual brainstorming are key. Future research could broaden the style range and include more diverse evaluative metrics. The study aims to guide the development of AI models for more nuanced and inclusive urban design applications, enhancing tools for architects and urban planners.</p>\",\"PeriodicalId\":55026,\"journal\":{\"name\":\"IEEE Computer Graphics and Applications\",\"volume\":\"PP \",\"pages\":\"37-45\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Graphics and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MCG.2024.3356169\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Graphics and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MCG.2024.3356169","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Testing the Capability of AI Art Tools for Urban Design.
This study aimed to evaluate the performance of three artificial intelligence (AI) image synthesis models, Dall-E 2, Stable Diffusion, and Midjourney, in generating urban design imagery based on scene descriptions. A total of 240 images were generated and evaluated by two independent professional evaluators using an adapted sensibleness and specificity average metric. The results showed significant differences between the three AI models, as well as differing scores across urban scenes, suggesting that some projects and design elements may be more challenging for AI art generators to represent visually. Analysis of individual design elements showed high accuracy in common features like skyscrapers and lawns, but less frequency in depicting unique elements such as sculptures and transit stops. AI-generated urban designs have potential applications in the early stages of exploration when rapid ideation and visual brainstorming are key. Future research could broaden the style range and include more diverse evaluative metrics. The study aims to guide the development of AI models for more nuanced and inclusive urban design applications, enhancing tools for architects and urban planners.
期刊介绍:
IEEE Computer Graphics and Applications (CG&A) bridges the theory and practice of computer graphics, visualization, virtual and augmented reality, and HCI. From specific algorithms to full system implementations, CG&A offers a unique combination of peer-reviewed feature articles and informal departments. Theme issues guest edited by leading researchers in their fields track the latest developments and trends in computer-generated graphical content, while tutorials and surveys provide a broad overview of interesting and timely topics. Regular departments further explore the core areas of graphics as well as extend into topics such as usability, education, history, and opinion. Each issue, the story of our cover focuses on creative applications of the technology by an artist or designer. Published six times a year, CG&A is indispensable reading for people working at the leading edge of computer-generated graphics technology and its applications in everything from business to the arts.