Shumin Zhang, Feipeng Zhao, Han Su, Yu Zhong, Jianwen Liang, Jiatang Chen, Matthew Liu Zheng, Jue Liu, Lo-Yueh Chang, Jiamin Fu, Sandamini H. Alahakoon, Yang Hu, Yu Liu, Yining Huang, Jiangping Tu, Tsun-Kong Sham, Xueliang Sun
{"title":"用于全固态锂电池的立方碘化物 LixYI3+x 超离子导体(通过缺陷处理)。","authors":"Shumin Zhang, Feipeng Zhao, Han Su, Yu Zhong, Jianwen Liang, Jiatang Chen, Matthew Liu Zheng, Jue Liu, Lo-Yueh Chang, Jiamin Fu, Sandamini H. Alahakoon, Yang Hu, Yu Liu, Yining Huang, Jiangping Tu, Tsun-Kong Sham, Xueliang Sun","doi":"10.1002/anie.202316360","DOIUrl":null,"url":null,"abstract":"<p>Halide solid electrolytes (SEs) have attracted significant attention due to their competitive ionic conductivity and good electrochemical stability. Among typical halide SEs (chlorides, bromides, and iodides), substantial efforts have been dedicated to chlorides or bromides, with iodide SEs receiving less attention. Nevertheless, compared with chlorides or bromides, iodides have both a softer Li sublattice and lower reduction limit, which enable iodides to possess potentially high ionic conductivity and intrinsic anti-reduction stability, respectively. Herein, we report a new series of iodide SEs: Li<sub>x</sub>YI<sub>3+x</sub> (<i>x</i>=2, 3, 4, or 9). Through synchrotron X-ray/neutron diffraction characterizations and theoretical calculations, we revealed that the Li<sub>x</sub>YI<sub>3+x</sub> SEs belong to the high-symmetry cubic structure, and can accommodate abundant vacancies. By manipulating the defects in the iodide structure, balanced Li-ion concentration and generated vacancies enables an optimized ionic conductivity of 1.04 × 10<sup>−3</sup> S cm<sup>−1</sup> at 25 °C for Li<sub>4</sub>YI<sub>7</sub>. Additionally, the promising Li-metal compatibility of Li<sub>4</sub>YI<sub>7</sub> is demonstrated via electrochemical characterizations (particularly all-solid-state Li-S batteries) combined with interface molecular dynamics simulations. Our study on iodide SEs provides deep insights into the relation between high-symmetry halide structures and ionic conduction, which can inspire future efforts to revitalize halide SEs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 12","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202316360","citationCount":"0","resultStr":"{\"title\":\"Cubic Iodide LixYI3+x Superionic Conductors through Defect Manipulation for All-Solid-State Li Batteries\",\"authors\":\"Shumin Zhang, Feipeng Zhao, Han Su, Yu Zhong, Jianwen Liang, Jiatang Chen, Matthew Liu Zheng, Jue Liu, Lo-Yueh Chang, Jiamin Fu, Sandamini H. Alahakoon, Yang Hu, Yu Liu, Yining Huang, Jiangping Tu, Tsun-Kong Sham, Xueliang Sun\",\"doi\":\"10.1002/anie.202316360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Halide solid electrolytes (SEs) have attracted significant attention due to their competitive ionic conductivity and good electrochemical stability. Among typical halide SEs (chlorides, bromides, and iodides), substantial efforts have been dedicated to chlorides or bromides, with iodide SEs receiving less attention. Nevertheless, compared with chlorides or bromides, iodides have both a softer Li sublattice and lower reduction limit, which enable iodides to possess potentially high ionic conductivity and intrinsic anti-reduction stability, respectively. Herein, we report a new series of iodide SEs: Li<sub>x</sub>YI<sub>3+x</sub> (<i>x</i>=2, 3, 4, or 9). Through synchrotron X-ray/neutron diffraction characterizations and theoretical calculations, we revealed that the Li<sub>x</sub>YI<sub>3+x</sub> SEs belong to the high-symmetry cubic structure, and can accommodate abundant vacancies. By manipulating the defects in the iodide structure, balanced Li-ion concentration and generated vacancies enables an optimized ionic conductivity of 1.04 × 10<sup>−3</sup> S cm<sup>−1</sup> at 25 °C for Li<sub>4</sub>YI<sub>7</sub>. Additionally, the promising Li-metal compatibility of Li<sub>4</sub>YI<sub>7</sub> is demonstrated via electrochemical characterizations (particularly all-solid-state Li-S batteries) combined with interface molecular dynamics simulations. Our study on iodide SEs provides deep insights into the relation between high-symmetry halide structures and ionic conduction, which can inspire future efforts to revitalize halide SEs.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"63 12\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202316360\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202316360\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202316360","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
卤化物固态电解质(SE)因其极具竞争力的离子导电性和良好的电化学稳定性而备受关注。 在典型的卤化物固态电解质(氯化物、溴化物和碘化物)中,氯化物或溴化物受到了广泛关注,而碘化物固态电解质受到的关注较少。 然而,与氯化物或溴化物相比,碘化物具有更软的锂亚晶格和更低的还原极限,这使得碘化物分别具有潜在的高离子电导率和内在抗还原稳定性。 在此,我们报告了一系列新的碘化物 SE:LixYI3+x(x = 2、3、4 或 9)。 通过同步辐射 X 射线/中子衍射表征和理论计算,我们发现 LixYI3+x SE 属于高对称性立方结构,可以容纳丰富的空位。 通过调节碘化物结构中的缺陷、平衡锂离子浓度和产生的空位,Li4YI7 在 25 ℃ 时的离子电导率达到了 1.04 × 10-3 S cm-1 的优化水平。 此外,通过电化学表征(尤其是全固态锂-S 电池)和界面分子动力学模拟,证明了 Li4YI7 具有良好的锂金属兼容性。 我们对碘化物 SE 的研究深入揭示了高对称性卤化物结构与离子传导之间的关系,这将激励未来振兴卤化物 SE 的努力。
Cubic Iodide LixYI3+x Superionic Conductors through Defect Manipulation for All-Solid-State Li Batteries
Halide solid electrolytes (SEs) have attracted significant attention due to their competitive ionic conductivity and good electrochemical stability. Among typical halide SEs (chlorides, bromides, and iodides), substantial efforts have been dedicated to chlorides or bromides, with iodide SEs receiving less attention. Nevertheless, compared with chlorides or bromides, iodides have both a softer Li sublattice and lower reduction limit, which enable iodides to possess potentially high ionic conductivity and intrinsic anti-reduction stability, respectively. Herein, we report a new series of iodide SEs: LixYI3+x (x=2, 3, 4, or 9). Through synchrotron X-ray/neutron diffraction characterizations and theoretical calculations, we revealed that the LixYI3+x SEs belong to the high-symmetry cubic structure, and can accommodate abundant vacancies. By manipulating the defects in the iodide structure, balanced Li-ion concentration and generated vacancies enables an optimized ionic conductivity of 1.04 × 10−3 S cm−1 at 25 °C for Li4YI7. Additionally, the promising Li-metal compatibility of Li4YI7 is demonstrated via electrochemical characterizations (particularly all-solid-state Li-S batteries) combined with interface molecular dynamics simulations. Our study on iodide SEs provides deep insights into the relation between high-symmetry halide structures and ionic conduction, which can inspire future efforts to revitalize halide SEs.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.