Yuhan Ma , Kyuhee Shin , GyuWon Lee , Joon Jin Song
{"title":"存在测量误差时的空间分类","authors":"Yuhan Ma , Kyuhee Shin , GyuWon Lee , Joon Jin Song","doi":"10.1016/j.spasta.2024.100812","DOIUrl":null,"url":null,"abstract":"<div><p>In recent decades, spatial classification has received considerable attention in a wide array of disciplines. In practice, binary response variable is often subject to measurement error, misclassification. To account for the misclassified response in spatial classification, we proposed validation data-based adjustment methods that use interval validation data to rectify misclassified responses. Regression calibration and multiple imputation methods are utilized to correct the misclassified outcomes at the locations where the gold-standard device is not available. Generalized linear mixed model and indicator Kriging are applied for spatial classification at unsampled locations. Simulation studies are performed to compare the proposed methods with naive methods that ignore the misclassification. It was found that the proposed models significantly improve prediction accuracy. Additionally, the proposed models are applied for precipitation detection in South Korea.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675324000034/pdfft?md5=0a15ee5f09dc0fe93583f96e7eac46cf&pid=1-s2.0-S2211675324000034-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spatial classification in the presence of measurement error\",\"authors\":\"Yuhan Ma , Kyuhee Shin , GyuWon Lee , Joon Jin Song\",\"doi\":\"10.1016/j.spasta.2024.100812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent decades, spatial classification has received considerable attention in a wide array of disciplines. In practice, binary response variable is often subject to measurement error, misclassification. To account for the misclassified response in spatial classification, we proposed validation data-based adjustment methods that use interval validation data to rectify misclassified responses. Regression calibration and multiple imputation methods are utilized to correct the misclassified outcomes at the locations where the gold-standard device is not available. Generalized linear mixed model and indicator Kriging are applied for spatial classification at unsampled locations. Simulation studies are performed to compare the proposed methods with naive methods that ignore the misclassification. It was found that the proposed models significantly improve prediction accuracy. Additionally, the proposed models are applied for precipitation detection in South Korea.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000034/pdfft?md5=0a15ee5f09dc0fe93583f96e7eac46cf&pid=1-s2.0-S2211675324000034-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000034\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000034","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Spatial classification in the presence of measurement error
In recent decades, spatial classification has received considerable attention in a wide array of disciplines. In practice, binary response variable is often subject to measurement error, misclassification. To account for the misclassified response in spatial classification, we proposed validation data-based adjustment methods that use interval validation data to rectify misclassified responses. Regression calibration and multiple imputation methods are utilized to correct the misclassified outcomes at the locations where the gold-standard device is not available. Generalized linear mixed model and indicator Kriging are applied for spatial classification at unsampled locations. Simulation studies are performed to compare the proposed methods with naive methods that ignore the misclassification. It was found that the proposed models significantly improve prediction accuracy. Additionally, the proposed models are applied for precipitation detection in South Korea.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.