Yutao Jing, Chi Feng, Taisheng Chen, Yuanli Zhu, Changpeng Li, Bangyi Tao, Qingjun Song
{"title":"利用 GOCI-II 图像探测东海有害藻华","authors":"Yutao Jing, Chi Feng, Taisheng Chen, Yuanli Zhu, Changpeng Li, Bangyi Tao, Qingjun Song","doi":"10.1186/s40562-023-00317-3","DOIUrl":null,"url":null,"abstract":"The East China Sea (ECS) has experienced severe harmful algal blooms (HABs) that have deleterious ecological effects on marine organisms. Recent studies indicated that deploying of a second geostationary ocean color imager (GOCI-II) can significantly improve ocean monitoring. This study systematically assessed GOCI-II and its ability to detect HABs and distinguish between dinoflagellates and diatoms in the ECS. First, the remote-sensing reflectance ( $${R}_{rs}\\left(\\lambda \\right),$$ $$\\lambda$$ represents the wavelength) obtained from GOCI-II was compared to the local measurement data. Compared to the bands at 412 and 443 nm, the bands at 490, 510, and 620 nm exhibited excellent consistency, which is important for HAB detection. Second, four different methods were employed to extract bloom areas in the ECS: red tide index (RI), spectral shape (SS), red band line height ratio (LHR), and algal bloom ratio ( $${R}_{AB}$$ ). The SS (510) algorithm was the most applicable for detecting blooms from GOCI-II imagery. Finally, the classification capability of GOCI-II for dinoflagellates and diatoms was evaluated using three existing algorithms: the bloom index (BI), combined $$Prorocentrum donghaiens$$ index (PDI) and diatom index (DI), and the spectral slope ( $${R}_{\\_slope}$$ ). The BI algorithm yielded more satisfactory results than the other algorithms.","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of GOCI-II images for detection of harmful algal blooms in the East China Sea\",\"authors\":\"Yutao Jing, Chi Feng, Taisheng Chen, Yuanli Zhu, Changpeng Li, Bangyi Tao, Qingjun Song\",\"doi\":\"10.1186/s40562-023-00317-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The East China Sea (ECS) has experienced severe harmful algal blooms (HABs) that have deleterious ecological effects on marine organisms. Recent studies indicated that deploying of a second geostationary ocean color imager (GOCI-II) can significantly improve ocean monitoring. This study systematically assessed GOCI-II and its ability to detect HABs and distinguish between dinoflagellates and diatoms in the ECS. First, the remote-sensing reflectance ( $${R}_{rs}\\\\left(\\\\lambda \\\\right),$$ $$\\\\lambda$$ represents the wavelength) obtained from GOCI-II was compared to the local measurement data. Compared to the bands at 412 and 443 nm, the bands at 490, 510, and 620 nm exhibited excellent consistency, which is important for HAB detection. Second, four different methods were employed to extract bloom areas in the ECS: red tide index (RI), spectral shape (SS), red band line height ratio (LHR), and algal bloom ratio ( $${R}_{AB}$$ ). The SS (510) algorithm was the most applicable for detecting blooms from GOCI-II imagery. Finally, the classification capability of GOCI-II for dinoflagellates and diatoms was evaluated using three existing algorithms: the bloom index (BI), combined $$Prorocentrum donghaiens$$ index (PDI) and diatom index (DI), and the spectral slope ( $${R}_{\\\\_slope}$$ ). The BI algorithm yielded more satisfactory results than the other algorithms.\",\"PeriodicalId\":48596,\"journal\":{\"name\":\"Geoscience Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1186/s40562-023-00317-3\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40562-023-00317-3","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Use of GOCI-II images for detection of harmful algal blooms in the East China Sea
The East China Sea (ECS) has experienced severe harmful algal blooms (HABs) that have deleterious ecological effects on marine organisms. Recent studies indicated that deploying of a second geostationary ocean color imager (GOCI-II) can significantly improve ocean monitoring. This study systematically assessed GOCI-II and its ability to detect HABs and distinguish between dinoflagellates and diatoms in the ECS. First, the remote-sensing reflectance ( $${R}_{rs}\left(\lambda \right),$$ $$\lambda$$ represents the wavelength) obtained from GOCI-II was compared to the local measurement data. Compared to the bands at 412 and 443 nm, the bands at 490, 510, and 620 nm exhibited excellent consistency, which is important for HAB detection. Second, four different methods were employed to extract bloom areas in the ECS: red tide index (RI), spectral shape (SS), red band line height ratio (LHR), and algal bloom ratio ( $${R}_{AB}$$ ). The SS (510) algorithm was the most applicable for detecting blooms from GOCI-II imagery. Finally, the classification capability of GOCI-II for dinoflagellates and diatoms was evaluated using three existing algorithms: the bloom index (BI), combined $$Prorocentrum donghaiens$$ index (PDI) and diatom index (DI), and the spectral slope ( $${R}_{\_slope}$$ ). The BI algorithm yielded more satisfactory results than the other algorithms.
Geoscience LettersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍:
Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.