阐明氧官能团对 M-N4-C 催化剂氧还原反应催化活性的影响:密度泛函理论与机器学习方法

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liang Xie, Wei Zhou, Yuming Huang, Zhibin Qu, Longhao Li, Chaowei Yang, Yani Ding, Junfeng Li, Xiaoxiao Meng, Fei Sun, Jihui Gao, Guangbo Zhao and Yukun Qin
{"title":"阐明氧官能团对 M-N4-C 催化剂氧还原反应催化活性的影响:密度泛函理论与机器学习方法","authors":"Liang Xie, Wei Zhou, Yuming Huang, Zhibin Qu, Longhao Li, Chaowei Yang, Yani Ding, Junfeng Li, Xiaoxiao Meng, Fei Sun, Jihui Gao, Guangbo Zhao and Yukun Qin","doi":"10.1039/D3MH02115G","DOIUrl":null,"url":null,"abstract":"<p >Efforts to enhance the efficiency of electrocatalysts for the oxygen reduction reaction (ORR) in energy conversion and storage devices present formidable challenges. In this endeavor, M–N<small><sub>4</sub></small>–C single-atom catalysts (MN<small><sub>4</sub></small>) have emerged as promising candidates due to their precise atomic structure and adaptable electronic properties. However, MN<small><sub>4</sub></small> catalysts inherently introduce oxygen functional groups (OGs), intricately influencing the catalytic process and complicating the identification of active sites. This study employs advanced density functional theory (DFT) calculations to investigate the profound influence of OGs on ORR catalysis within MN<small><sub>4</sub></small> catalysts (referred to as OGs@MN<small><sub>4</sub></small>, where M represents Fe or Co). We established the following activity order for the 2eORR: for OGs@CoN<small><sub>4</sub></small>: OH@CoN<small><sub>4</sub></small> &gt; CoN<small><sub>4</sub></small> &gt; CHO@CoN<small><sub>4</sub></small> &gt; C–O–C@CoN<small><sub>4</sub></small> &gt; COC@CoN<small><sub>4</sub></small> &gt; COOH@CoN<small><sub>4</sub></small> &gt; C<img>O@CoN<small><sub>4</sub></small>; for OGs@FeN<small><sub>4</sub></small>: COC@FeN<small><sub>4</sub></small> &gt; C<img>O@FeN<small><sub>4</sub></small> &gt; OH@FeN<small><sub>4</sub></small> &gt; FeN<small><sub>4</sub></small> &gt; COOH@FeN<small><sub>4</sub></small> &gt; CHO@FeN<small><sub>4</sub></small> &gt; C–O–C@FeN<small><sub>4</sub></small>. Multiple oxygen combinations were constructed and found to be the true origin of MN<small><sub>4</sub></small> activity (for instance, the overpotential of 2OH@CoN<small><sub>4</sub></small> as low as 0.07 V). Furthermore, we explored the performance of the OGs@MN<small><sub>4</sub></small> system through charge and d-band center analysis, revealing the limitations of previous electron-withdrawing/donating strategies. Machine learning analysis, including GBR, GPR, and LINER models, effectively guides the prediction of catalyst performance (with an <em>R</em><small><sup>2</sup></small> value of 0.93 for predicting Δ<em>G</em><small><sub>*OOH_vac</sub></small> in the GBR model). The <em>E</em><small><sub>g</sub></small> descriptor was identified as the primary factor characterizing Δ<em>G</em><small><sub>*OOH_vac</sub></small> (accounting for 62.8%; OGs@CoN<small><sub>4</sub></small>: <em>R</em><small><sup>2</sup></small> = 0.9077, OGs@FeN<small><sub>4</sub></small>: <em>R</em><small><sup>2</sup></small> = 0.7781). This study unveils the significant impact of OGs on MN<small><sub>4</sub></small> catalysts and pioneers design and synthesis criteria rooted in <em>E</em><small><sub>g</sub></small>. These innovative findings provide valuable insights into understanding the origins of catalytic activity and guiding the design of carbon-based single-atom catalysts, appealing to a broad audience interested in energy conversion technologies and materials science.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 7","pages":" 1719-1731"},"PeriodicalIF":10.7000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the impact of oxygen functional groups on the catalytic activity of M–N4–C catalysts for the oxygen reduction reaction: a density functional theory and machine learning approach†\",\"authors\":\"Liang Xie, Wei Zhou, Yuming Huang, Zhibin Qu, Longhao Li, Chaowei Yang, Yani Ding, Junfeng Li, Xiaoxiao Meng, Fei Sun, Jihui Gao, Guangbo Zhao and Yukun Qin\",\"doi\":\"10.1039/D3MH02115G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Efforts to enhance the efficiency of electrocatalysts for the oxygen reduction reaction (ORR) in energy conversion and storage devices present formidable challenges. In this endeavor, M–N<small><sub>4</sub></small>–C single-atom catalysts (MN<small><sub>4</sub></small>) have emerged as promising candidates due to their precise atomic structure and adaptable electronic properties. However, MN<small><sub>4</sub></small> catalysts inherently introduce oxygen functional groups (OGs), intricately influencing the catalytic process and complicating the identification of active sites. This study employs advanced density functional theory (DFT) calculations to investigate the profound influence of OGs on ORR catalysis within MN<small><sub>4</sub></small> catalysts (referred to as OGs@MN<small><sub>4</sub></small>, where M represents Fe or Co). We established the following activity order for the 2eORR: for OGs@CoN<small><sub>4</sub></small>: OH@CoN<small><sub>4</sub></small> &gt; CoN<small><sub>4</sub></small> &gt; CHO@CoN<small><sub>4</sub></small> &gt; C–O–C@CoN<small><sub>4</sub></small> &gt; COC@CoN<small><sub>4</sub></small> &gt; COOH@CoN<small><sub>4</sub></small> &gt; C<img>O@CoN<small><sub>4</sub></small>; for OGs@FeN<small><sub>4</sub></small>: COC@FeN<small><sub>4</sub></small> &gt; C<img>O@FeN<small><sub>4</sub></small> &gt; OH@FeN<small><sub>4</sub></small> &gt; FeN<small><sub>4</sub></small> &gt; COOH@FeN<small><sub>4</sub></small> &gt; CHO@FeN<small><sub>4</sub></small> &gt; C–O–C@FeN<small><sub>4</sub></small>. Multiple oxygen combinations were constructed and found to be the true origin of MN<small><sub>4</sub></small> activity (for instance, the overpotential of 2OH@CoN<small><sub>4</sub></small> as low as 0.07 V). Furthermore, we explored the performance of the OGs@MN<small><sub>4</sub></small> system through charge and d-band center analysis, revealing the limitations of previous electron-withdrawing/donating strategies. Machine learning analysis, including GBR, GPR, and LINER models, effectively guides the prediction of catalyst performance (with an <em>R</em><small><sup>2</sup></small> value of 0.93 for predicting Δ<em>G</em><small><sub>*OOH_vac</sub></small> in the GBR model). The <em>E</em><small><sub>g</sub></small> descriptor was identified as the primary factor characterizing Δ<em>G</em><small><sub>*OOH_vac</sub></small> (accounting for 62.8%; OGs@CoN<small><sub>4</sub></small>: <em>R</em><small><sup>2</sup></small> = 0.9077, OGs@FeN<small><sub>4</sub></small>: <em>R</em><small><sup>2</sup></small> = 0.7781). This study unveils the significant impact of OGs on MN<small><sub>4</sub></small> catalysts and pioneers design and synthesis criteria rooted in <em>E</em><small><sub>g</sub></small>. These innovative findings provide valuable insights into understanding the origins of catalytic activity and guiding the design of carbon-based single-atom catalysts, appealing to a broad audience interested in energy conversion technologies and materials science.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 7\",\"pages\":\" 1719-1731\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/mh/d3mh02115g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mh/d3mh02115g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提高能量转换和储存设备中氧还原反应(ORR)电催化剂的效率是一项艰巨的挑战。在这方面,M-N4-C 单原子催化剂(MN4)因其精确的原子结构和适应性强的电子特性而成为有前途的候选催化剂。然而,MN4 催化剂本身会引入氧官能团 (OG),从而对催化过程产生复杂影响,并使活性位点的识别变得复杂。本研究采用先进的密度泛函理论 (DFT) 计算方法,研究 OGs 对 MN4 催化剂(称为 OGs@MN4,其中 M 代表 Fe 或 Co)中 ORR 催化的深刻影响。我们建立了以下 2eORR 活性顺序:对于 OGs@CoN4:OH@CoN4 > CoN4 > CHO@CoN4 > C-O-C@CoN4 > COC@CoN4 > COOH@CoN4 > C=O@CoN4.对于 OGs@FeN4:COC@FeN4;C=O@FeN4;OH@FeN4;FeN4;COOH@FeN4;CHO@FeN4;C-O-C@FeN4。我们构建了多种氧组合,并发现它们是 MN4 活性的真正来源(例如,2OH@CoN4 的过电位低至 0.07V)。此外,我们还通过电荷和 d 带中心分析探讨了 OGs@MN4 系统的性能,揭示了以往电子抽取/捐献策略的局限性。包括 GBR、GPR 和 LINER 模型在内的机器学习分析有效地指导了催化剂性能的预测(在 GBR 模型中,预测 ∆G*OOH_vac 的 R2 值为 0.93)。OGs@CoN4: R2=0.9077, OGs@FeN4: R2=0.7781)。这项研究揭示了 OGs 对 MN4 催化剂的重大影响,并开创了以 Eg 为基础的设计和合成标准。这些创新性发现为了解催化活性的起源和指导碳基单原子催化剂的设计提供了宝贵的见解,吸引了对能源转换技术和材料科学感兴趣的广大读者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elucidating the impact of oxygen functional groups on the catalytic activity of M–N4–C catalysts for the oxygen reduction reaction: a density functional theory and machine learning approach†

Elucidating the impact of oxygen functional groups on the catalytic activity of M–N4–C catalysts for the oxygen reduction reaction: a density functional theory and machine learning approach†

Efforts to enhance the efficiency of electrocatalysts for the oxygen reduction reaction (ORR) in energy conversion and storage devices present formidable challenges. In this endeavor, M–N4–C single-atom catalysts (MN4) have emerged as promising candidates due to their precise atomic structure and adaptable electronic properties. However, MN4 catalysts inherently introduce oxygen functional groups (OGs), intricately influencing the catalytic process and complicating the identification of active sites. This study employs advanced density functional theory (DFT) calculations to investigate the profound influence of OGs on ORR catalysis within MN4 catalysts (referred to as OGs@MN4, where M represents Fe or Co). We established the following activity order for the 2eORR: for OGs@CoN4: OH@CoN4 > CoN4 > CHO@CoN4 > C–O–C@CoN4 > COC@CoN4 > COOH@CoN4 > CO@CoN4; for OGs@FeN4: COC@FeN4 > CO@FeN4 > OH@FeN4 > FeN4 > COOH@FeN4 > CHO@FeN4 > C–O–C@FeN4. Multiple oxygen combinations were constructed and found to be the true origin of MN4 activity (for instance, the overpotential of 2OH@CoN4 as low as 0.07 V). Furthermore, we explored the performance of the OGs@MN4 system through charge and d-band center analysis, revealing the limitations of previous electron-withdrawing/donating strategies. Machine learning analysis, including GBR, GPR, and LINER models, effectively guides the prediction of catalyst performance (with an R2 value of 0.93 for predicting ΔG*OOH_vac in the GBR model). The Eg descriptor was identified as the primary factor characterizing ΔG*OOH_vac (accounting for 62.8%; OGs@CoN4: R2 = 0.9077, OGs@FeN4: R2 = 0.7781). This study unveils the significant impact of OGs on MN4 catalysts and pioneers design and synthesis criteria rooted in Eg. These innovative findings provide valuable insights into understanding the origins of catalytic activity and guiding the design of carbon-based single-atom catalysts, appealing to a broad audience interested in energy conversion technologies and materials science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信