Phuc Hoan Tu, Mio Sakamoto, Duc Minh Trinh Dinh, Tin Chanh Duc Doan, Mau Chien Dang, Yusuke Shiratori
{"title":"具有铈基氧化物支撑分散体的纸质结构催化剂用于提高以模拟沼气为燃料的 SOFC 的性能","authors":"Phuc Hoan Tu, Mio Sakamoto, Duc Minh Trinh Dinh, Tin Chanh Duc Doan, Mau Chien Dang, Yusuke Shiratori","doi":"10.1002/fuce.202300133","DOIUrl":null,"url":null,"abstract":"<p>Solid oxide fuel cells (SOFCs) can accept a direct feed of biogas for power generation; however, carbon deposition is a major obstacle to their practical application. When a paper-structured catalyst (PSC) with a dispersion of Ni-loaded flowerlike Ce<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (Ni/CZ(F)) was applied to the anode of an electrolyte-supported cell (ESC), the open-circuit voltage of the cell directly fed simulated biogas was increased from 0.87 to 0.98 V at 750°C. The rates of cell-voltage degradation and coke formation of the ESC with the Ni/CZ(F)-PSC during 100 h of operation were 4.3% kh<sup>−1</sup> and 0.43 mg-C g-PSC<sup>−1</sup> h<sup>−1</sup>, respectively, which were lower than those of an ESC with a Ni-loaded PSC without the CZ(F) dispersion (10.4% kh<sup>−1</sup> and 8.1 mg-C g-PSC<sup>−1</sup> h<sup>−1</sup>, respectively). This performance improvement is attributed to the unique porous morphology and high oxygen storage capacity of CZ(F), which can contribute to the prevention of Ni agglomeration and the removal of coke from the catalyst surface, respectively. Thus, the Ni/CZ(F)-PSC can function as a practically applicable reforming domain for an internal-reforming biogas-fueled SOFC.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paper-structured catalyst with a dispersion of ceria-based oxide support for improving the performance of an SOFC fed with simulated biogas\",\"authors\":\"Phuc Hoan Tu, Mio Sakamoto, Duc Minh Trinh Dinh, Tin Chanh Duc Doan, Mau Chien Dang, Yusuke Shiratori\",\"doi\":\"10.1002/fuce.202300133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solid oxide fuel cells (SOFCs) can accept a direct feed of biogas for power generation; however, carbon deposition is a major obstacle to their practical application. When a paper-structured catalyst (PSC) with a dispersion of Ni-loaded flowerlike Ce<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (Ni/CZ(F)) was applied to the anode of an electrolyte-supported cell (ESC), the open-circuit voltage of the cell directly fed simulated biogas was increased from 0.87 to 0.98 V at 750°C. The rates of cell-voltage degradation and coke formation of the ESC with the Ni/CZ(F)-PSC during 100 h of operation were 4.3% kh<sup>−1</sup> and 0.43 mg-C g-PSC<sup>−1</sup> h<sup>−1</sup>, respectively, which were lower than those of an ESC with a Ni-loaded PSC without the CZ(F) dispersion (10.4% kh<sup>−1</sup> and 8.1 mg-C g-PSC<sup>−1</sup> h<sup>−1</sup>, respectively). This performance improvement is attributed to the unique porous morphology and high oxygen storage capacity of CZ(F), which can contribute to the prevention of Ni agglomeration and the removal of coke from the catalyst surface, respectively. Thus, the Ni/CZ(F)-PSC can function as a practically applicable reforming domain for an internal-reforming biogas-fueled SOFC.</p>\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202300133\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202300133","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Paper-structured catalyst with a dispersion of ceria-based oxide support for improving the performance of an SOFC fed with simulated biogas
Solid oxide fuel cells (SOFCs) can accept a direct feed of biogas for power generation; however, carbon deposition is a major obstacle to their practical application. When a paper-structured catalyst (PSC) with a dispersion of Ni-loaded flowerlike Ce0.5Zr0.5O2 (Ni/CZ(F)) was applied to the anode of an electrolyte-supported cell (ESC), the open-circuit voltage of the cell directly fed simulated biogas was increased from 0.87 to 0.98 V at 750°C. The rates of cell-voltage degradation and coke formation of the ESC with the Ni/CZ(F)-PSC during 100 h of operation were 4.3% kh−1 and 0.43 mg-C g-PSC−1 h−1, respectively, which were lower than those of an ESC with a Ni-loaded PSC without the CZ(F) dispersion (10.4% kh−1 and 8.1 mg-C g-PSC−1 h−1, respectively). This performance improvement is attributed to the unique porous morphology and high oxygen storage capacity of CZ(F), which can contribute to the prevention of Ni agglomeration and the removal of coke from the catalyst surface, respectively. Thus, the Ni/CZ(F)-PSC can function as a practically applicable reforming domain for an internal-reforming biogas-fueled SOFC.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.