Ziaur Rahman , Arbaz Sujat Shaikh , K. Venkata Rao , Manoj P. Dandekar
{"title":"氧小檗碱通过 TLR4/NLRP3 通路保护大脑中动脉闭塞引发的大鼠脑损伤","authors":"Ziaur Rahman , Arbaz Sujat Shaikh , K. Venkata Rao , Manoj P. Dandekar","doi":"10.1016/j.jchemneu.2024.102393","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Cerebral ischemia is a life-threatening health concern that leads to severe neurological complications and fatalities worldwide. Although timely intervention with clot-removing agents curtails serious post-stroke neurological dysfunctions, no effective neuroprotective intervention is available for addressing post-recanalization neuroinflammation. Herein, for the first time we studied the effect of oxyberberine (OBB), a derivative of </span>berberine, on transient </span>middle cerebral artery<span><span><span><span> occlusion (MCAO)-generated neurological consequences in Sprague-Dawley rats. The MCAO-operated rats exhibited significant somatosensory and sensorimotor dysfunctions in adhesive removal, foot fault, paw whisker, and rotarod assays<span> at 1 and 3 days post-surgery. These MCAO-generated neurological deficits were prevented in OBB-treated (50 and 100 mg/kg) rats, and also coincided with a smaller infarct area (in 2,3,5-triphenyl tetrazolium chloride staining) and decreased neuronal death<span> (in cresyl violet<span> staining) in the ipsilateral hemisphere of these animals. The immunostaining of neuronal </span></span></span></span>nuclear protein (NeuN) and glial-fibrillary acidic protein (GFAP) also echoes the neuroprotective nature of OBB. The increased expression of neuroinflammatory and blood-brain barrier </span>tight junction proteins like toll-like receptor 4 (TLR4), TRAF-6, </span>nuclear factor kappa B<span><span> (NF-κB), pNF-κB, nNOS, ASC, and IKBα in the ipsilateral part of MCAO-operated rats were restored to normal following OBB treatment. We also observed the decline in plasma levels/mRNA transcription of TNF-α, IL-1β, </span>NLRP3, IL-6, and matrix metalloproteinase-9 and increased expression of </span></span></span>occludin<span> and claudin in OBB-treated rats. These outcomes imply that OBB may prevent the MCAO-induced neurological consequences and neuroinflammation by interfering with TLR4 and NLRP3 signaling in rats.</span></p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":"136 ","pages":"Article 102393"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxyberberine protects middle cerebral artery occlusion triggered cerebral injury through TLR4/NLRP3 pathway in rats\",\"authors\":\"Ziaur Rahman , Arbaz Sujat Shaikh , K. Venkata Rao , Manoj P. Dandekar\",\"doi\":\"10.1016/j.jchemneu.2024.102393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Cerebral ischemia is a life-threatening health concern that leads to severe neurological complications and fatalities worldwide. Although timely intervention with clot-removing agents curtails serious post-stroke neurological dysfunctions, no effective neuroprotective intervention is available for addressing post-recanalization neuroinflammation. Herein, for the first time we studied the effect of oxyberberine (OBB), a derivative of </span>berberine, on transient </span>middle cerebral artery<span><span><span><span> occlusion (MCAO)-generated neurological consequences in Sprague-Dawley rats. The MCAO-operated rats exhibited significant somatosensory and sensorimotor dysfunctions in adhesive removal, foot fault, paw whisker, and rotarod assays<span> at 1 and 3 days post-surgery. These MCAO-generated neurological deficits were prevented in OBB-treated (50 and 100 mg/kg) rats, and also coincided with a smaller infarct area (in 2,3,5-triphenyl tetrazolium chloride staining) and decreased neuronal death<span> (in cresyl violet<span> staining) in the ipsilateral hemisphere of these animals. The immunostaining of neuronal </span></span></span></span>nuclear protein (NeuN) and glial-fibrillary acidic protein (GFAP) also echoes the neuroprotective nature of OBB. The increased expression of neuroinflammatory and blood-brain barrier </span>tight junction proteins like toll-like receptor 4 (TLR4), TRAF-6, </span>nuclear factor kappa B<span><span> (NF-κB), pNF-κB, nNOS, ASC, and IKBα in the ipsilateral part of MCAO-operated rats were restored to normal following OBB treatment. We also observed the decline in plasma levels/mRNA transcription of TNF-α, IL-1β, </span>NLRP3, IL-6, and matrix metalloproteinase-9 and increased expression of </span></span></span>occludin<span> and claudin in OBB-treated rats. These outcomes imply that OBB may prevent the MCAO-induced neurological consequences and neuroinflammation by interfering with TLR4 and NLRP3 signaling in rats.</span></p></div>\",\"PeriodicalId\":15324,\"journal\":{\"name\":\"Journal of chemical neuroanatomy\",\"volume\":\"136 \",\"pages\":\"Article 102393\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chemical neuroanatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891061824000061\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891061824000061","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Oxyberberine protects middle cerebral artery occlusion triggered cerebral injury through TLR4/NLRP3 pathway in rats
Cerebral ischemia is a life-threatening health concern that leads to severe neurological complications and fatalities worldwide. Although timely intervention with clot-removing agents curtails serious post-stroke neurological dysfunctions, no effective neuroprotective intervention is available for addressing post-recanalization neuroinflammation. Herein, for the first time we studied the effect of oxyberberine (OBB), a derivative of berberine, on transient middle cerebral artery occlusion (MCAO)-generated neurological consequences in Sprague-Dawley rats. The MCAO-operated rats exhibited significant somatosensory and sensorimotor dysfunctions in adhesive removal, foot fault, paw whisker, and rotarod assays at 1 and 3 days post-surgery. These MCAO-generated neurological deficits were prevented in OBB-treated (50 and 100 mg/kg) rats, and also coincided with a smaller infarct area (in 2,3,5-triphenyl tetrazolium chloride staining) and decreased neuronal death (in cresyl violet staining) in the ipsilateral hemisphere of these animals. The immunostaining of neuronal nuclear protein (NeuN) and glial-fibrillary acidic protein (GFAP) also echoes the neuroprotective nature of OBB. The increased expression of neuroinflammatory and blood-brain barrier tight junction proteins like toll-like receptor 4 (TLR4), TRAF-6, nuclear factor kappa B (NF-κB), pNF-κB, nNOS, ASC, and IKBα in the ipsilateral part of MCAO-operated rats were restored to normal following OBB treatment. We also observed the decline in plasma levels/mRNA transcription of TNF-α, IL-1β, NLRP3, IL-6, and matrix metalloproteinase-9 and increased expression of occludin and claudin in OBB-treated rats. These outcomes imply that OBB may prevent the MCAO-induced neurological consequences and neuroinflammation by interfering with TLR4 and NLRP3 signaling in rats.
期刊介绍:
The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches.
Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples.
The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.