{"title":"近底局部随机强迫的瑞利-贝纳德对流","authors":"Juraj Földes, Armen Shirikyan","doi":"10.1007/s10884-023-10336-5","DOIUrl":null,"url":null,"abstract":"<p>We prove stochastic stability of the three-dimensional Rayleigh–Bénard convection in the infinite Prandtl number regime for any pair of temperatures maintained on the top and the bottom. Assuming that the non-degenerate random perturbation acts in a thin layer adjacent to the bottom of the domain, we prove that the law of the random flow periodic in the two infinite directions stabilises to a unique stationary measure, provided that there is at least one point accessible from any initial state. We also prove that the latter property is satisfied if the amplitude of the noise is sufficiently large.\n</p>","PeriodicalId":15624,"journal":{"name":"Journal of Dynamics and Differential Equations","volume":"5 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rayleigh–Bénard Convection with Stochastic Forcing Localised Near the Bottom\",\"authors\":\"Juraj Földes, Armen Shirikyan\",\"doi\":\"10.1007/s10884-023-10336-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove stochastic stability of the three-dimensional Rayleigh–Bénard convection in the infinite Prandtl number regime for any pair of temperatures maintained on the top and the bottom. Assuming that the non-degenerate random perturbation acts in a thin layer adjacent to the bottom of the domain, we prove that the law of the random flow periodic in the two infinite directions stabilises to a unique stationary measure, provided that there is at least one point accessible from any initial state. We also prove that the latter property is satisfied if the amplitude of the noise is sufficiently large.\\n</p>\",\"PeriodicalId\":15624,\"journal\":{\"name\":\"Journal of Dynamics and Differential Equations\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamics and Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-023-10336-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-023-10336-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rayleigh–Bénard Convection with Stochastic Forcing Localised Near the Bottom
We prove stochastic stability of the three-dimensional Rayleigh–Bénard convection in the infinite Prandtl number regime for any pair of temperatures maintained on the top and the bottom. Assuming that the non-degenerate random perturbation acts in a thin layer adjacent to the bottom of the domain, we prove that the law of the random flow periodic in the two infinite directions stabilises to a unique stationary measure, provided that there is at least one point accessible from any initial state. We also prove that the latter property is satisfied if the amplitude of the noise is sufficiently large.
期刊介绍:
Journal of Dynamics and Differential Equations serves as an international forum for the publication of high-quality, peer-reviewed original papers in the field of mathematics, biology, engineering, physics, and other areas of science. The dynamical issues treated in the journal cover all the classical topics, including attractors, bifurcation theory, connection theory, dichotomies, stability theory and transversality, as well as topics in new and emerging areas of the field.