一类非链环上循环码的结构与等级

IF 1.3 4区 数学 Q1 MATHEMATICS
Nikita Jain, Sucheta Dutt, Ranjeet Sehmi
{"title":"一类非链环上循环码的结构与等级","authors":"Nikita Jain, Sucheta Dutt, Ranjeet Sehmi","doi":"10.1155/2024/8817721","DOIUrl":null,"url":null,"abstract":"The rings <span><svg height=\"12.1436pt\" style=\"vertical-align:-3.18148pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 24.414 12.1436\" width=\"24.414pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.931,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,16.783,0)\"></path></g></svg><span></span><svg height=\"12.1436pt\" style=\"vertical-align:-3.18148pt\" version=\"1.1\" viewbox=\"27.2691838 -8.96212 19.997 12.1436\" width=\"19.997pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.319,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,33.221,0)\"><use xlink:href=\"#g113-91\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,42.152,3.132)\"><use xlink:href=\"#g50-53\"></use></g></svg></span> have been classified into chain rings and nonchain rings based on the values of <span><svg height=\"14.7729pt\" style=\"vertical-align:-3.181499pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 21.344 14.7729\" width=\"21.344pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g185-47\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.902,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,14.48,0)\"></path></g></svg><span></span><svg height=\"14.7729pt\" style=\"vertical-align:-3.181499pt\" version=\"1.1\" viewbox=\"24.9261838 -11.5914 24.414 14.7729\" width=\"24.414pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,24.976,0)\"><use xlink:href=\"#g113-91\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,33.907,3.132)\"><use xlink:href=\"#g50-53\"></use></g><g transform=\"matrix(.013,0,0,-0.013,41.759,0)\"><use xlink:href=\"#g117-36\"></use></g></svg><span></span><span><svg height=\"14.7729pt\" style=\"vertical-align:-3.181499pt\" version=\"1.1\" viewbox=\"52.2461838 -11.5914 20.044 14.7729\" width=\"20.044pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,52.296,0)\"><use xlink:href=\"#g185-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,58.198,0)\"><use xlink:href=\"#g113-91\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,67.129,3.132)\"><use xlink:href=\"#g50-53\"></use></g></svg>.</span></span> In this paper, the structure of a cyclic code of arbitrary length over the rings <span><svg height=\"12.1436pt\" style=\"vertical-align:-3.18148pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 24.414 12.1436\" width=\"24.414pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-91\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.931,3.132)\"><use xlink:href=\"#g50-53\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.783,0)\"><use xlink:href=\"#g117-36\"></use></g></svg><span></span><svg height=\"12.1436pt\" style=\"vertical-align:-3.18148pt\" version=\"1.1\" viewbox=\"27.2691838 -8.96212 19.997 12.1436\" width=\"19.997pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.319,0)\"><use xlink:href=\"#g185-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,33.221,0)\"><use xlink:href=\"#g113-91\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,42.152,3.132)\"><use xlink:href=\"#g50-53\"></use></g></svg></span> for those values of <svg height=\"11.8239pt\" style=\"vertical-align:-0.2325001pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 10.9702 11.8239\" width=\"10.9702pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g185-47\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.902,-5.741)\"><use xlink:href=\"#g50-51\"></use></g></svg> for which these are nonchain rings has been established. A unique form of generators for a cyclic code over these rings has also been obtained. Furthermore, the rank and cardinality of a cyclic code over these rings have been established by finding a minimal spanning set for the code.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"21 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and Rank of a Cyclic Code over a Class of Nonchain Rings\",\"authors\":\"Nikita Jain, Sucheta Dutt, Ranjeet Sehmi\",\"doi\":\"10.1155/2024/8817721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rings <span><svg height=\\\"12.1436pt\\\" style=\\\"vertical-align:-3.18148pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.96212 24.414 12.1436\\\" width=\\\"24.414pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.931,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,16.783,0)\\\"></path></g></svg><span></span><svg height=\\\"12.1436pt\\\" style=\\\"vertical-align:-3.18148pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.2691838 -8.96212 19.997 12.1436\\\" width=\\\"19.997pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.319,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,33.221,0)\\\"><use xlink:href=\\\"#g113-91\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,42.152,3.132)\\\"><use xlink:href=\\\"#g50-53\\\"></use></g></svg></span> have been classified into chain rings and nonchain rings based on the values of <span><svg height=\\\"14.7729pt\\\" style=\\\"vertical-align:-3.181499pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 21.344 14.7729\\\" width=\\\"21.344pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g185-47\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.902,-5.741)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,14.48,0)\\\"></path></g></svg><span></span><svg height=\\\"14.7729pt\\\" style=\\\"vertical-align:-3.181499pt\\\" version=\\\"1.1\\\" viewbox=\\\"24.9261838 -11.5914 24.414 14.7729\\\" width=\\\"24.414pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,24.976,0)\\\"><use xlink:href=\\\"#g113-91\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,33.907,3.132)\\\"><use xlink:href=\\\"#g50-53\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,41.759,0)\\\"><use xlink:href=\\\"#g117-36\\\"></use></g></svg><span></span><span><svg height=\\\"14.7729pt\\\" style=\\\"vertical-align:-3.181499pt\\\" version=\\\"1.1\\\" viewbox=\\\"52.2461838 -11.5914 20.044 14.7729\\\" width=\\\"20.044pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,52.296,0)\\\"><use xlink:href=\\\"#g185-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,58.198,0)\\\"><use xlink:href=\\\"#g113-91\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,67.129,3.132)\\\"><use xlink:href=\\\"#g50-53\\\"></use></g></svg>.</span></span> In this paper, the structure of a cyclic code of arbitrary length over the rings <span><svg height=\\\"12.1436pt\\\" style=\\\"vertical-align:-3.18148pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.96212 24.414 12.1436\\\" width=\\\"24.414pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-91\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.931,3.132)\\\"><use xlink:href=\\\"#g50-53\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.783,0)\\\"><use xlink:href=\\\"#g117-36\\\"></use></g></svg><span></span><svg height=\\\"12.1436pt\\\" style=\\\"vertical-align:-3.18148pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.2691838 -8.96212 19.997 12.1436\\\" width=\\\"19.997pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.319,0)\\\"><use xlink:href=\\\"#g185-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,33.221,0)\\\"><use xlink:href=\\\"#g113-91\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,42.152,3.132)\\\"><use xlink:href=\\\"#g50-53\\\"></use></g></svg></span> for those values of <svg height=\\\"11.8239pt\\\" style=\\\"vertical-align:-0.2325001pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 10.9702 11.8239\\\" width=\\\"10.9702pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g185-47\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.902,-5.741)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g></svg> for which these are nonchain rings has been established. A unique form of generators for a cyclic code over these rings has also been obtained. Furthermore, the rank and cardinality of a cyclic code over these rings have been established by finding a minimal spanning set for the code.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8817721\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/8817721","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

根据环的值,这些环被分为链环和非链环。 本文建立了这些环上任意长度的循环码的结构,对于那些环的值为非链环的环。本文还获得了这些环上循环码的独特生成器形式。此外,通过找到这些环上循环码的最小跨集,还确定了该码的秩和心数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure and Rank of a Cyclic Code over a Class of Nonchain Rings
The rings have been classified into chain rings and nonchain rings based on the values of . In this paper, the structure of a cyclic code of arbitrary length over the rings for those values of for which these are nonchain rings has been established. A unique form of generators for a cyclic code over these rings has also been obtained. Furthermore, the rank and cardinality of a cyclic code over these rings have been established by finding a minimal spanning set for the code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信