广义桔子上的多变量多项式样条曲线

IF 0.9 3区 数学 Q2 MATHEMATICS
Maritza Sirvent , Tatyana Sorokina , Nelly Villamizar , Beihui Yuan
{"title":"广义桔子上的多变量多项式样条曲线","authors":"Maritza Sirvent ,&nbsp;Tatyana Sorokina ,&nbsp;Nelly Villamizar ,&nbsp;Beihui Yuan","doi":"10.1016/j.jat.2024.106016","DOIUrl":null,"url":null,"abstract":"<div><p>We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call <em>(generalized) oranges</em>. Such partitions are composed of a finite number of maximal faces with exactly one shared <em>medial</em> face. We reduce the problem of finding the dimension of splines on oranges to computing dimensions of splines on simpler, lower-dimensional partitions that we call <em>projected oranges</em>. We use both algebraic and Bernstein–Bézier tools.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000029/pdfft?md5=4b8bba34d42f748261b9923cce3ba6be&pid=1-s2.0-S0021904524000029-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multivariate polynomial splines on generalized oranges\",\"authors\":\"Maritza Sirvent ,&nbsp;Tatyana Sorokina ,&nbsp;Nelly Villamizar ,&nbsp;Beihui Yuan\",\"doi\":\"10.1016/j.jat.2024.106016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call <em>(generalized) oranges</em>. Such partitions are composed of a finite number of maximal faces with exactly one shared <em>medial</em> face. We reduce the problem of finding the dimension of splines on oranges to computing dimensions of splines on simpler, lower-dimensional partitions that we call <em>projected oranges</em>. We use both algebraic and Bernstein–Bézier tools.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021904524000029/pdfft?md5=4b8bba34d42f748261b9923cce3ba6be&pid=1-s2.0-S0021904524000029-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904524000029\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000029","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的多元样条曲线空间定义在一种特殊的简单分区上,我们称之为(广义)桔子。这种分区由有限个最大面组成,其中有一个共享的中间面。我们把求桔子上的花键维数问题简化为计算更简单、更低维的分区上的花键维数,我们称之为投影桔子。我们同时使用代数和伯恩斯坦-贝塞尔工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate polynomial splines on generalized oranges

We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call (generalized) oranges. Such partitions are composed of a finite number of maximal faces with exactly one shared medial face. We reduce the problem of finding the dimension of splines on oranges to computing dimensions of splines on simpler, lower-dimensional partitions that we call projected oranges. We use both algebraic and Bernstein–Bézier tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信