{"title":"多重转折性,但 imprimitivity 系统除外","authors":"Colin D. Reid","doi":"10.1515/jgth-2023-0062","DOIUrl":null,"url":null,"abstract":"Let Ω be a set equipped with an equivalence relation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0062_ineq_0001.png\" /> <jats:tex-math>\\sim</jats:tex-math> </jats:alternatives> </jats:inline-formula>; we refer to the equivalence classes as blocks of Ω. A permutation group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>≤</m:mo> <m:mrow> <m:mi>Sym</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0062_ineq_0002.png\" /> <jats:tex-math>G\\leq\\mathrm{Sym}(\\Omega)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is <jats:italic>𝑘-by-block-transitive</jats:italic> if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0062_ineq_0001.png\" /> <jats:tex-math>\\sim</jats:tex-math> </jats:alternatives> </jats:inline-formula> is 𝐺-invariant, with at least 𝑘 blocks, and 𝐺 is transitive on the set of 𝑘-tuples of points such that no two entries lie in the same block. The action is <jats:italic>block-faithful</jats:italic> if the action on the set of blocks is faithful. In this article, we classify the finite block-faithful 2-by-block-transitive actions. We also show that, for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0062_ineq_0004.png\" /> <jats:tex-math>k\\geq 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>, there are no finite block-faithful 𝑘-by-block-transitive actions with nontrivial blocks.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple transitivity except for a system of imprimitivity\",\"authors\":\"Colin D. Reid\",\"doi\":\"10.1515/jgth-2023-0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Ω be a set equipped with an equivalence relation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>∼</m:mo> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0062_ineq_0001.png\\\" /> <jats:tex-math>\\\\sim</jats:tex-math> </jats:alternatives> </jats:inline-formula>; we refer to the equivalence classes as blocks of Ω. A permutation group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>G</m:mi> <m:mo>≤</m:mo> <m:mrow> <m:mi>Sym</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0062_ineq_0002.png\\\" /> <jats:tex-math>G\\\\leq\\\\mathrm{Sym}(\\\\Omega)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is <jats:italic>𝑘-by-block-transitive</jats:italic> if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>∼</m:mo> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0062_ineq_0001.png\\\" /> <jats:tex-math>\\\\sim</jats:tex-math> </jats:alternatives> </jats:inline-formula> is 𝐺-invariant, with at least 𝑘 blocks, and 𝐺 is transitive on the set of 𝑘-tuples of points such that no two entries lie in the same block. The action is <jats:italic>block-faithful</jats:italic> if the action on the set of blocks is faithful. In this article, we classify the finite block-faithful 2-by-block-transitive actions. We also show that, for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0062_ineq_0004.png\\\" /> <jats:tex-math>k\\\\geq 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>, there are no finite block-faithful 𝑘-by-block-transitive actions with nontrivial blocks.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple transitivity except for a system of imprimitivity
Let Ω be a set equipped with an equivalence relation ∼\sim; we refer to the equivalence classes as blocks of Ω. A permutation group G≤Sym(Ω)G\leq\mathrm{Sym}(\Omega) is 𝑘-by-block-transitive if ∼\sim is 𝐺-invariant, with at least 𝑘 blocks, and 𝐺 is transitive on the set of 𝑘-tuples of points such that no two entries lie in the same block. The action is block-faithful if the action on the set of blocks is faithful. In this article, we classify the finite block-faithful 2-by-block-transitive actions. We also show that, for k≥3k\geq 3, there are no finite block-faithful 𝑘-by-block-transitive actions with nontrivial blocks.