科巴姆定理的强版本

IF 1.2 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Philipp Hieronymi, Chris Schulz
{"title":"科巴姆定理的强版本","authors":"Philipp Hieronymi, Chris Schulz","doi":"10.1137/22m1538065","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Computing, Ahead of Print. <br/> Abstract. Let [math] be two multiplicatively independent integers. Cobham’s famous theorem states that a set [math] is both [math]-recognizable and [math]-recognizable if and only if it is definable in Presburger arithmetic. Here we show the following strengthening: let [math] be [math]-recognizable, and let [math] be [math]-recognizable such that both [math] and [math] are not definable in Presburger arithmetic. Then the first-order logical theory of [math] is undecidable. This is in contrast to a well-known theorem of Büchi stating that the first-order logical theory of [math] is decidable.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"2 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Strong Version of Cobham’s Theorem\",\"authors\":\"Philipp Hieronymi, Chris Schulz\",\"doi\":\"10.1137/22m1538065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Computing, Ahead of Print. <br/> Abstract. Let [math] be two multiplicatively independent integers. Cobham’s famous theorem states that a set [math] is both [math]-recognizable and [math]-recognizable if and only if it is definable in Presburger arithmetic. Here we show the following strengthening: let [math] be [math]-recognizable, and let [math] be [math]-recognizable such that both [math] and [math] are not definable in Presburger arithmetic. Then the first-order logical theory of [math] is undecidable. This is in contrast to a well-known theorem of Büchi stating that the first-order logical theory of [math] is decidable.\",\"PeriodicalId\":49532,\"journal\":{\"name\":\"SIAM Journal on Computing\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1538065\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1137/22m1538065","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 计算期刊》,提前印刷。 摘要设 [math] 是两个乘法独立整数。科巴姆的著名定理指出,当且仅当一个集合[math]在普雷斯伯格算术中是可定义的时,它既是[math]可识别的,又是[math]可识别的。在此,我们展示如下加强:设[math]是[math]可识别的,且设[math]是[math]可识别的,使得[math]和[math]在普雷斯伯格算术中都不可定义。那么[math]的一阶逻辑理论就是不可判定的。这与布奇(Büchi)的一个著名定理相反,该定理指出[math]的一阶逻辑理论是可判的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Strong Version of Cobham’s Theorem
SIAM Journal on Computing, Ahead of Print.
Abstract. Let [math] be two multiplicatively independent integers. Cobham’s famous theorem states that a set [math] is both [math]-recognizable and [math]-recognizable if and only if it is definable in Presburger arithmetic. Here we show the following strengthening: let [math] be [math]-recognizable, and let [math] be [math]-recognizable such that both [math] and [math] are not definable in Presburger arithmetic. Then the first-order logical theory of [math] is undecidable. This is in contrast to a well-known theorem of Büchi stating that the first-order logical theory of [math] is decidable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Computing
SIAM Journal on Computing 工程技术-计算机:理论方法
CiteScore
4.60
自引率
0.00%
发文量
68
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信