Zetao Chen , Yifan Dong , Jie Fu , Yongchang Bai , Qiya Gao , Ziyue Qin , Jiawang Wang , Shuang Li
{"title":"基于生物流体协同分析的多通道集成可穿戴检测系统,用于监测伤口感染","authors":"Zetao Chen , Yifan Dong , Jie Fu , Yongchang Bai , Qiya Gao , Ziyue Qin , Jiawang Wang , Shuang Li","doi":"10.1016/j.biosx.2024.100443","DOIUrl":null,"url":null,"abstract":"<div><p>The infection monitoring of chronic wounds can effectively improve the quality of wound care. However, the widely used single variable intermittent monitoring of wound provides little available information, which leads to inaccurate diagnosis and untimely warnings. In this study, a collaborative biofluid analysis based multi-channel integrated wearable detection system was constructed for the continuous detection of analytes such as pH, uric acid (UA), and C-reactive protein (CRP) in wound exudates with time division multiplexing. Based on the functionally modification with nanomaterials, integrated screen-printed electrodes (iSPE) with three working electrodes were designed for the collaboratively analyzing of wound exudates. Through the development of integrated circuits, the multi-channel wearable detection printed circuit board was constructed. With a self-designed interface, this iSPE was stably connected to the printed circuit board and realized the detection of three targets in the range of pH 3–8, UA concentrations 5–500 μmol/L, and CRP concentrations 1–1000 ng/mL at the same time. Combined with a smartphone, these results were collaborated analyzed and transferred for health management. Therefore, this integrated wearable multi-channel detection system can provide reliable and continuous evaluations for early warning of infection and further treatment of chronic wounds.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"17 ","pages":"Article 100443"},"PeriodicalIF":10.6100,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000074/pdfft?md5=e28c62edd264e7acd01166e994500120&pid=1-s2.0-S2590137024000074-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Collaborative biofluid analysis based multi-channel integrated wearable detection system for the monitoring of wound infection\",\"authors\":\"Zetao Chen , Yifan Dong , Jie Fu , Yongchang Bai , Qiya Gao , Ziyue Qin , Jiawang Wang , Shuang Li\",\"doi\":\"10.1016/j.biosx.2024.100443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The infection monitoring of chronic wounds can effectively improve the quality of wound care. However, the widely used single variable intermittent monitoring of wound provides little available information, which leads to inaccurate diagnosis and untimely warnings. In this study, a collaborative biofluid analysis based multi-channel integrated wearable detection system was constructed for the continuous detection of analytes such as pH, uric acid (UA), and C-reactive protein (CRP) in wound exudates with time division multiplexing. Based on the functionally modification with nanomaterials, integrated screen-printed electrodes (iSPE) with three working electrodes were designed for the collaboratively analyzing of wound exudates. Through the development of integrated circuits, the multi-channel wearable detection printed circuit board was constructed. With a self-designed interface, this iSPE was stably connected to the printed circuit board and realized the detection of three targets in the range of pH 3–8, UA concentrations 5–500 μmol/L, and CRP concentrations 1–1000 ng/mL at the same time. Combined with a smartphone, these results were collaborated analyzed and transferred for health management. Therefore, this integrated wearable multi-channel detection system can provide reliable and continuous evaluations for early warning of infection and further treatment of chronic wounds.</p></div>\",\"PeriodicalId\":260,\"journal\":{\"name\":\"Biosensors and Bioelectronics: X\",\"volume\":\"17 \",\"pages\":\"Article 100443\"},\"PeriodicalIF\":10.6100,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000074/pdfft?md5=e28c62edd264e7acd01166e994500120&pid=1-s2.0-S2590137024000074-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Collaborative biofluid analysis based multi-channel integrated wearable detection system for the monitoring of wound infection
The infection monitoring of chronic wounds can effectively improve the quality of wound care. However, the widely used single variable intermittent monitoring of wound provides little available information, which leads to inaccurate diagnosis and untimely warnings. In this study, a collaborative biofluid analysis based multi-channel integrated wearable detection system was constructed for the continuous detection of analytes such as pH, uric acid (UA), and C-reactive protein (CRP) in wound exudates with time division multiplexing. Based on the functionally modification with nanomaterials, integrated screen-printed electrodes (iSPE) with three working electrodes were designed for the collaboratively analyzing of wound exudates. Through the development of integrated circuits, the multi-channel wearable detection printed circuit board was constructed. With a self-designed interface, this iSPE was stably connected to the printed circuit board and realized the detection of three targets in the range of pH 3–8, UA concentrations 5–500 μmol/L, and CRP concentrations 1–1000 ng/mL at the same time. Combined with a smartphone, these results were collaborated analyzed and transferred for health management. Therefore, this integrated wearable multi-channel detection system can provide reliable and continuous evaluations for early warning of infection and further treatment of chronic wounds.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.