在整理来自不同调查的数据时,利用融合效应降低距离抽样模型的不确定性

IF 2 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY
Floriane Plard, Hélder Araújo, Amaia Astarloa, Maite Louzao, Camilo Saavedra, José Antonio Vazquez Bonales, Graham John Pierce, Matthieu Authier
{"title":"在整理来自不同调查的数据时,利用融合效应降低距离抽样模型的不确定性","authors":"Floriane Plard,&nbsp;Hélder Araújo,&nbsp;Amaia Astarloa,&nbsp;Maite Louzao,&nbsp;Camilo Saavedra,&nbsp;José Antonio Vazquez Bonales,&nbsp;Graham John Pierce,&nbsp;Matthieu Authier","doi":"10.1111/mms.13104","DOIUrl":null,"url":null,"abstract":"<p>Estimates of population abundance are required to study the impacts of human activities on populations and assess their conservation status. Despite considerable effort to improve data collection, uncertainty around estimates of cetacean densities can remain large. A fundamental concept underlying distance sampling is the detection function. Here we focus on reducing the uncertainty in the estimation of detection function parameters in analyses combining data sets from multiple surveys, with known effects on the precision of density estimates. We developed detection functions using infinite mixture models that can be applied on data collating multiple species and/or surveys. These models enable automatic clustering by fusing the species and surveys with similar detection functions. We present a simulation analysis of a multisurvey data set in a Bayesian framework where we demonstrated that distance sampling models including fusion effects showed lower uncertainty than classical distance sampling models. We illustrated the benefits of this new model using data of line transect surveys from the Bay of Biscay and Iberian Coast. Future estimates of abundance using conventional distance sampling models on large multispecies surveys or on data sets combining multiple surveys could benefit from this new model to provide more precise density estimates.</p>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"40 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.13104","citationCount":"0","resultStr":"{\"title\":\"Using fusion effects to decrease uncertainty in distance sampling models when collating data from different surveys\",\"authors\":\"Floriane Plard,&nbsp;Hélder Araújo,&nbsp;Amaia Astarloa,&nbsp;Maite Louzao,&nbsp;Camilo Saavedra,&nbsp;José Antonio Vazquez Bonales,&nbsp;Graham John Pierce,&nbsp;Matthieu Authier\",\"doi\":\"10.1111/mms.13104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Estimates of population abundance are required to study the impacts of human activities on populations and assess their conservation status. Despite considerable effort to improve data collection, uncertainty around estimates of cetacean densities can remain large. A fundamental concept underlying distance sampling is the detection function. Here we focus on reducing the uncertainty in the estimation of detection function parameters in analyses combining data sets from multiple surveys, with known effects on the precision of density estimates. We developed detection functions using infinite mixture models that can be applied on data collating multiple species and/or surveys. These models enable automatic clustering by fusing the species and surveys with similar detection functions. We present a simulation analysis of a multisurvey data set in a Bayesian framework where we demonstrated that distance sampling models including fusion effects showed lower uncertainty than classical distance sampling models. We illustrated the benefits of this new model using data of line transect surveys from the Bay of Biscay and Iberian Coast. Future estimates of abundance using conventional distance sampling models on large multispecies surveys or on data sets combining multiple surveys could benefit from this new model to provide more precise density estimates.</p>\",\"PeriodicalId\":18725,\"journal\":{\"name\":\"Marine Mammal Science\",\"volume\":\"40 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.13104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Mammal Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mms.13104\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Mammal Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mms.13104","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

要研究人类活动对鲸类种群的影响并评估其保护状况,就必须对其种群丰度进行估算。尽管在改进数据收集方面做了大量工作,但鲸目动物密度估计值的不确定性仍然很大。距离采样的一个基本概念是探测函数。在此,我们将重点放在降低探测函数参数估算的不确定性上,分析结合了来自多个调查的数据集,其对密度估算精度的影响是已知的。我们利用无限混合物模型开发了检测函数,可用于多个物种和/或调查数据的核对。这些模型通过融合具有相似检测函数的物种和调查,实现了自动聚类。我们在贝叶斯框架下对多调查数据集进行了模拟分析,结果表明,与传统的距离采样模型相比,包含融合效应的距离采样模型显示出更低的不确定性。我们利用比斯开湾和伊比利亚海岸的横断面调查数据说明了这种新模型的优势。未来在大型多物种调查或多种调查相结合的数据集上使用传统距离取样模型估算丰度时,可受益于这一新模型,以提供更精确的密度估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Using fusion effects to decrease uncertainty in distance sampling models when collating data from different surveys

Using fusion effects to decrease uncertainty in distance sampling models when collating data from different surveys

Estimates of population abundance are required to study the impacts of human activities on populations and assess their conservation status. Despite considerable effort to improve data collection, uncertainty around estimates of cetacean densities can remain large. A fundamental concept underlying distance sampling is the detection function. Here we focus on reducing the uncertainty in the estimation of detection function parameters in analyses combining data sets from multiple surveys, with known effects on the precision of density estimates. We developed detection functions using infinite mixture models that can be applied on data collating multiple species and/or surveys. These models enable automatic clustering by fusing the species and surveys with similar detection functions. We present a simulation analysis of a multisurvey data set in a Bayesian framework where we demonstrated that distance sampling models including fusion effects showed lower uncertainty than classical distance sampling models. We illustrated the benefits of this new model using data of line transect surveys from the Bay of Biscay and Iberian Coast. Future estimates of abundance using conventional distance sampling models on large multispecies surveys or on data sets combining multiple surveys could benefit from this new model to provide more precise density estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Mammal Science
Marine Mammal Science 生物-动物学
CiteScore
4.80
自引率
8.70%
发文量
89
审稿时长
6-12 weeks
期刊介绍: Published for the Society for Marine Mammalogy, Marine Mammal Science is a source of significant new findings on marine mammals resulting from original research on their form and function, evolution, systematics, physiology, biochemistry, behavior, population biology, life history, genetics, ecology and conservation. The journal features both original and review articles, notes, opinions and letters. It serves as a vital resource for anyone studying marine mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信