{"title":"汉代铅釉陶的腐蚀机理","authors":"Kexin Zhang, Chen Wu, Jing Zhao, Wendi Yu, Meng Zhao","doi":"10.1038/s41529-024-00428-y","DOIUrl":null,"url":null,"abstract":"Ancient pottery, having endured prolonged burial in soil, invariably underwent the process of glaze corrosion. The micromorphology and structural composition of four lead-glazed pottery fragments dating back to the Han Dynasty, excavated in the Qinhan New Town within Xixian New area of Xi’an are elucidated by comprehensive analysis method. The results reveal that the corrosion products predominantly comprised PbCO3, Pb3(PO4)2, CaCO3, and Ca3(PO4)2. Concurrently, the presence of organic substances exhibiting characteristic self-excitation fluorescence in the cracks of the sample is identified through fluorescence microscopy and Fourier infrared spectroscopy. Through a comparative analysis of well-preserved and severely corroded samples, taking into account compositional analysis, observations of corrosion morphology, and the characteristics of corrosion products, it is deduced that the primary corrosion mechanisms involve chemical corrosion, microbial corrosion, and crack corrosion. This study provides a comprehensive depiction of glaze corrosion process inherent to lead-glazed pottery and establishes corresponding corrosion models.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00428-y.pdf","citationCount":"0","resultStr":"{\"title\":\"The corrosion mechanism of lead-glazed pottery in Han dynasty\",\"authors\":\"Kexin Zhang, Chen Wu, Jing Zhao, Wendi Yu, Meng Zhao\",\"doi\":\"10.1038/s41529-024-00428-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ancient pottery, having endured prolonged burial in soil, invariably underwent the process of glaze corrosion. The micromorphology and structural composition of four lead-glazed pottery fragments dating back to the Han Dynasty, excavated in the Qinhan New Town within Xixian New area of Xi’an are elucidated by comprehensive analysis method. The results reveal that the corrosion products predominantly comprised PbCO3, Pb3(PO4)2, CaCO3, and Ca3(PO4)2. Concurrently, the presence of organic substances exhibiting characteristic self-excitation fluorescence in the cracks of the sample is identified through fluorescence microscopy and Fourier infrared spectroscopy. Through a comparative analysis of well-preserved and severely corroded samples, taking into account compositional analysis, observations of corrosion morphology, and the characteristics of corrosion products, it is deduced that the primary corrosion mechanisms involve chemical corrosion, microbial corrosion, and crack corrosion. This study provides a comprehensive depiction of glaze corrosion process inherent to lead-glazed pottery and establishes corresponding corrosion models.\",\"PeriodicalId\":19270,\"journal\":{\"name\":\"npj Materials Degradation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41529-024-00428-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Materials Degradation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41529-024-00428-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00428-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The corrosion mechanism of lead-glazed pottery in Han dynasty
Ancient pottery, having endured prolonged burial in soil, invariably underwent the process of glaze corrosion. The micromorphology and structural composition of four lead-glazed pottery fragments dating back to the Han Dynasty, excavated in the Qinhan New Town within Xixian New area of Xi’an are elucidated by comprehensive analysis method. The results reveal that the corrosion products predominantly comprised PbCO3, Pb3(PO4)2, CaCO3, and Ca3(PO4)2. Concurrently, the presence of organic substances exhibiting characteristic self-excitation fluorescence in the cracks of the sample is identified through fluorescence microscopy and Fourier infrared spectroscopy. Through a comparative analysis of well-preserved and severely corroded samples, taking into account compositional analysis, observations of corrosion morphology, and the characteristics of corrosion products, it is deduced that the primary corrosion mechanisms involve chemical corrosion, microbial corrosion, and crack corrosion. This study provides a comprehensive depiction of glaze corrosion process inherent to lead-glazed pottery and establishes corresponding corrosion models.
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies