可植入压电薄膜中耳麦克风:在人体尸体颞骨中的表现

IF 2.4 3区 医学 Q3 NEUROSCIENCES
John Z Zhang, Lukas Graf, Annesya Banerjee, Aaron Yeiser, Christopher I McHugh, Ioannis Kymissis, Jeffrey H Lang, Elizabeth S Olson, Hideko Heidi Nakajima
{"title":"可植入压电薄膜中耳麦克风:在人体尸体颞骨中的表现","authors":"John Z Zhang, Lukas Graf, Annesya Banerjee, Aaron Yeiser, Christopher I McHugh, Ioannis Kymissis, Jeffrey H Lang, Elizabeth S Olson, Hideko Heidi Nakajima","doi":"10.1007/s10162-024-00927-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>One of the major reasons that totally implantable cochlear microphones are not readily available is the lack of good implantable microphones. An implantable microphone has the potential to provide a range of benefits over external microphones for cochlear implant users including the filtering ability of the outer ear, cosmetics, and usability in all situations. This paper presents results from experiments in human cadaveric ears of a piezofilm microphone concept under development as a possible component of a future implantable microphone system for use with cochlear implants. This microphone is referred to here as a drum microphone (DrumMic) that senses the robust and predictable motion of the umbo, the tip of the malleus.</p><p><strong>Methods: </strong>The performance was measured by five DrumMics inserted in four different human cadaveric temporal bones. Sensitivity, linearity, bandwidth, and equivalent input noise were measured during these experiments using a sound stimulus and measurement setup.</p><p><strong>Results: </strong>The sensitivity of the DrumMics was found to be tightly clustered across different microphones and ears despite differences in umbo and middle ear anatomy. The DrumMics were shown to behave linearly across a large dynamic range (46 dB SPL to 100 dB SPL) across a wide bandwidth (100 Hz to 8 kHz). The equivalent input noise (over a bandwidth of 0.1-10 kHz) of the DrumMic and amplifier referenced to the ear canal was measured to be about 54 dB SPL in the temporal bone experiment and estimated to be 46 dB SPL after accounting for the pressure gain of the outer ear.</p><p><strong>Conclusion: </strong>The results demonstrate that the DrumMic behaves robustly across ears and fabrication. The equivalent input noise performance (related to the lowest level of sound measurable) was shown to approach that of commercial hearing aid microphones. To advance this demonstration of the DrumMic concept to a future prototype implantable in humans, work on encapsulation, biocompatibility, and connectorization will be required.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"53-61"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907555/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Implantable Piezofilm Middle Ear Microphone: Performance in Human Cadaveric Temporal Bones.\",\"authors\":\"John Z Zhang, Lukas Graf, Annesya Banerjee, Aaron Yeiser, Christopher I McHugh, Ioannis Kymissis, Jeffrey H Lang, Elizabeth S Olson, Hideko Heidi Nakajima\",\"doi\":\"10.1007/s10162-024-00927-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>One of the major reasons that totally implantable cochlear microphones are not readily available is the lack of good implantable microphones. An implantable microphone has the potential to provide a range of benefits over external microphones for cochlear implant users including the filtering ability of the outer ear, cosmetics, and usability in all situations. This paper presents results from experiments in human cadaveric ears of a piezofilm microphone concept under development as a possible component of a future implantable microphone system for use with cochlear implants. This microphone is referred to here as a drum microphone (DrumMic) that senses the robust and predictable motion of the umbo, the tip of the malleus.</p><p><strong>Methods: </strong>The performance was measured by five DrumMics inserted in four different human cadaveric temporal bones. Sensitivity, linearity, bandwidth, and equivalent input noise were measured during these experiments using a sound stimulus and measurement setup.</p><p><strong>Results: </strong>The sensitivity of the DrumMics was found to be tightly clustered across different microphones and ears despite differences in umbo and middle ear anatomy. The DrumMics were shown to behave linearly across a large dynamic range (46 dB SPL to 100 dB SPL) across a wide bandwidth (100 Hz to 8 kHz). The equivalent input noise (over a bandwidth of 0.1-10 kHz) of the DrumMic and amplifier referenced to the ear canal was measured to be about 54 dB SPL in the temporal bone experiment and estimated to be 46 dB SPL after accounting for the pressure gain of the outer ear.</p><p><strong>Conclusion: </strong>The results demonstrate that the DrumMic behaves robustly across ears and fabrication. The equivalent input noise performance (related to the lowest level of sound measurable) was shown to approach that of commercial hearing aid microphones. To advance this demonstration of the DrumMic concept to a future prototype implantable in humans, work on encapsulation, biocompatibility, and connectorization will be required.</p>\",\"PeriodicalId\":56283,\"journal\":{\"name\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"volume\":\" \",\"pages\":\"53-61\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907555/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10162-024-00927-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-024-00927-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的:完全植入式人工耳蜗麦克风不能随时使用的主要原因之一是缺乏好的植入式麦克风。与外置麦克风相比,植入式麦克风有可能为人工耳蜗用户带来一系列好处,包括外耳的过滤能力、美观和在各种情况下的可用性。本文介绍了正在开发的压电薄膜麦克风概念的人耳实验结果,这种麦克风可能是未来与人工耳蜗一起使用的植入式麦克风系统的组成部分。这种麦克风在这里被称为鼓式麦克风(DrumMic),它能感知鼓膜(umbo)(鼓膜的顶端)强有力且可预测的运动:方法:将五个 DrumMic 插入四个不同的人体颞骨中,对其性能进行测量。在这些实验中,使用声音刺激和测量装置测量了灵敏度、线性度、带宽和等效输入噪声:结果:尽管颞骨和中耳解剖结构存在差异,但在不同的传声器和耳朵中,DrumMics 的灵敏度是紧密集中的。结果表明,DrumMics 在宽频带(100 Hz 至 8 kHz)的大动态范围(46 dB SPL 至 100 dB SPL)内表现线性。在颞骨实验中,测得 DrumMic 和放大器以耳道为基准的等效输入噪声(带宽为 0.1-10 kHz)约为 54 dB SPL,考虑到外耳的压力增益后,估计为 46 dB SPL:结果表明,DrumMic 在不同的耳朵和制造工艺中都表现出很强的稳定性。等效输入噪声性能(与可测量的最低声级有关)接近商用助听器麦克风。为了将 DrumMic 概念的演示推进到未来可植入人体的原型,还需要在封装、生物相容性和连接器化方面开展工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Implantable Piezofilm Middle Ear Microphone: Performance in Human Cadaveric Temporal Bones.

An Implantable Piezofilm Middle Ear Microphone: Performance in Human Cadaveric Temporal Bones.

Purpose: One of the major reasons that totally implantable cochlear microphones are not readily available is the lack of good implantable microphones. An implantable microphone has the potential to provide a range of benefits over external microphones for cochlear implant users including the filtering ability of the outer ear, cosmetics, and usability in all situations. This paper presents results from experiments in human cadaveric ears of a piezofilm microphone concept under development as a possible component of a future implantable microphone system for use with cochlear implants. This microphone is referred to here as a drum microphone (DrumMic) that senses the robust and predictable motion of the umbo, the tip of the malleus.

Methods: The performance was measured by five DrumMics inserted in four different human cadaveric temporal bones. Sensitivity, linearity, bandwidth, and equivalent input noise were measured during these experiments using a sound stimulus and measurement setup.

Results: The sensitivity of the DrumMics was found to be tightly clustered across different microphones and ears despite differences in umbo and middle ear anatomy. The DrumMics were shown to behave linearly across a large dynamic range (46 dB SPL to 100 dB SPL) across a wide bandwidth (100 Hz to 8 kHz). The equivalent input noise (over a bandwidth of 0.1-10 kHz) of the DrumMic and amplifier referenced to the ear canal was measured to be about 54 dB SPL in the temporal bone experiment and estimated to be 46 dB SPL after accounting for the pressure gain of the outer ear.

Conclusion: The results demonstrate that the DrumMic behaves robustly across ears and fabrication. The equivalent input noise performance (related to the lowest level of sound measurable) was shown to approach that of commercial hearing aid microphones. To advance this demonstration of the DrumMic concept to a future prototype implantable in humans, work on encapsulation, biocompatibility, and connectorization will be required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
57
审稿时长
6-12 weeks
期刊介绍: JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance. Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信