{"title":"观察者在知觉幅度集合中有效提取最小和最大元素:两部分格式的证据","authors":"Darko Odic, Tyler Knowlton, Alexis Wellwood, Paul Pietroski, Jeffrey Lidz, Justin Halberda","doi":"10.1177/09567976231223130","DOIUrl":null,"url":null,"abstract":"<p><p>The mind represents abstract magnitude information, including time, space, and number, but in what format is this information stored? We show support for the bipartite format of perceptual magnitudes, in which the measured value on a dimension is scaled to the dynamic range of the input, leading to a privileged status for values at the lowest and highest end of the range. In six experiments with college undergraduates, we show that observers are faster and more accurate to find the endpoints (i.e., the minimum and maximum) than any of the inner values, even as the number of items increases beyond visual short-term memory limits. Our results show that length, size, and number are represented in a dynamic format that allows for comparison-free sorting, with endpoints represented with an immediately accessible status, consistent with the bipartite model of perceptual magnitudes. We discuss the implications for theories of visual search and ensemble perception.</p>","PeriodicalId":20745,"journal":{"name":"Psychological Science","volume":" ","pages":"162-174"},"PeriodicalIF":4.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observers Efficiently Extract the Minimal and Maximal Element in Perceptual Magnitude Sets: Evidence for a Bipartite Format.\",\"authors\":\"Darko Odic, Tyler Knowlton, Alexis Wellwood, Paul Pietroski, Jeffrey Lidz, Justin Halberda\",\"doi\":\"10.1177/09567976231223130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mind represents abstract magnitude information, including time, space, and number, but in what format is this information stored? We show support for the bipartite format of perceptual magnitudes, in which the measured value on a dimension is scaled to the dynamic range of the input, leading to a privileged status for values at the lowest and highest end of the range. In six experiments with college undergraduates, we show that observers are faster and more accurate to find the endpoints (i.e., the minimum and maximum) than any of the inner values, even as the number of items increases beyond visual short-term memory limits. Our results show that length, size, and number are represented in a dynamic format that allows for comparison-free sorting, with endpoints represented with an immediately accessible status, consistent with the bipartite model of perceptual magnitudes. We discuss the implications for theories of visual search and ensemble perception.</p>\",\"PeriodicalId\":20745,\"journal\":{\"name\":\"Psychological Science\",\"volume\":\" \",\"pages\":\"162-174\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/09567976231223130\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/09567976231223130","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Observers Efficiently Extract the Minimal and Maximal Element in Perceptual Magnitude Sets: Evidence for a Bipartite Format.
The mind represents abstract magnitude information, including time, space, and number, but in what format is this information stored? We show support for the bipartite format of perceptual magnitudes, in which the measured value on a dimension is scaled to the dynamic range of the input, leading to a privileged status for values at the lowest and highest end of the range. In six experiments with college undergraduates, we show that observers are faster and more accurate to find the endpoints (i.e., the minimum and maximum) than any of the inner values, even as the number of items increases beyond visual short-term memory limits. Our results show that length, size, and number are represented in a dynamic format that allows for comparison-free sorting, with endpoints represented with an immediately accessible status, consistent with the bipartite model of perceptual magnitudes. We discuss the implications for theories of visual search and ensemble perception.
期刊介绍:
Psychological Science, the flagship journal of The Association for Psychological Science (previously the American Psychological Society), is a leading publication in the field with a citation ranking/impact factor among the top ten worldwide. It publishes authoritative articles covering various domains of psychological science, including brain and behavior, clinical science, cognition, learning and memory, social psychology, and developmental psychology. In addition to full-length articles, the journal features summaries of new research developments and discussions on psychological issues in government and public affairs. "Psychological Science" is published twelve times annually.