体积敏感/调节阴离子通道 VSOR/VRAC 的生理学。第 1 部分:从发现和表型特征到分子实体鉴定。

IF 2.6 4区 医学 Q2 PHYSIOLOGY
Yasunobu Okada
{"title":"体积敏感/调节阴离子通道 VSOR/VRAC 的生理学。第 1 部分:从发现和表型特征到分子实体鉴定。","authors":"Yasunobu Okada","doi":"10.1186/s12576-023-00897-x","DOIUrl":null,"url":null,"abstract":"<p><p>The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification. Although the pore-forming core molecules and the volume-sensing subcomponent of VSOR/VRAC were identified as LRRC8 members and TRPM7 in 2014 and 2021, respectively, it is stressed that the identification of the molecular entity of VSOR/VRAC is still not complete enough to explain the full set of phenotypical properties.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"3"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795261/pdf/","citationCount":"0","resultStr":"{\"title\":\"Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC. Part 1: from its discovery and phenotype characterization to the molecular entity identification.\",\"authors\":\"Yasunobu Okada\",\"doi\":\"10.1186/s12576-023-00897-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification. Although the pore-forming core molecules and the volume-sensing subcomponent of VSOR/VRAC were identified as LRRC8 members and TRPM7 in 2014 and 2021, respectively, it is stressed that the identification of the molecular entity of VSOR/VRAC is still not complete enough to explain the full set of phenotypical properties.</p>\",\"PeriodicalId\":16832,\"journal\":{\"name\":\"Journal of Physiological Sciences\",\"volume\":\"74 1\",\"pages\":\"3\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12576-023-00897-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12576-023-00897-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

1988年发现的体积敏感外向整流或体积调节阴离子通道(VSOR/VRAC)在大多数脊椎动物细胞类型中都有表达,主要参与细胞膨胀后的体积调节和诱导细胞死亡。本系列综述文章介绍了有关 VSOR/VRAC 的功能和分子特性以及生理和病理生理作用的已知信息和有待发现的信息。这篇第 1 部分的综述文章从生理学的角度,首先介绍了它的发现及其在细胞体积调节中的意义,其次介绍了它的表型特性,第三介绍了它的分子鉴定。虽然 VSOR/VRAC 的孔形成核心分子和体积传感亚组分分别于 2014 年和 2021 年被鉴定为 LRRC8 成员和 TRPM7,但本文强调,VSOR/VRAC 分子实体的鉴定仍不够完整,不足以解释其全部表型特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC. Part 1: from its discovery and phenotype characterization to the molecular entity identification.

The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification. Although the pore-forming core molecules and the volume-sensing subcomponent of VSOR/VRAC were identified as LRRC8 members and TRPM7 in 2014 and 2021, respectively, it is stressed that the identification of the molecular entity of VSOR/VRAC is still not complete enough to explain the full set of phenotypical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
4.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiological Sciences publishes peer-reviewed original papers, reviews, short communications, technical notes, and letters to the editor, based on the principles and theories of modern physiology and addressed to the international scientific community. All fields of physiology are covered, encompassing molecular, cellular and systems physiology. The emphasis is on human and vertebrate physiology, but comparative papers are also considered. The process of obtaining results must be ethically sound. Fields covered: Adaptation and environment Autonomic nervous function Biophysics Cell sensors and signaling Central nervous system and brain sciences Endocrinology and metabolism Excitable membranes and neural cell physiology Exercise physiology Gastrointestinal and kidney physiology Heart and circulatory physiology Molecular and cellular physiology Muscle physiology Physiome/systems biology Respiration physiology Senses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信