Bushra Mazhar, Nazish Mazhar Ali, Farkhanda Manzoor, Muhammad Kamran Khan, Muhammad Nasir, Muhammad Ramzan
{"title":"开发数据驱动的机器学习模型及其在预测登革热爆发中的潜在作用。","authors":"Bushra Mazhar, Nazish Mazhar Ali, Farkhanda Manzoor, Muhammad Kamran Khan, Muhammad Nasir, Muhammad Ramzan","doi":"10.4103/0972-9062.393976","DOIUrl":null,"url":null,"abstract":"<p><p>Dengue fever is one of the most widespread vector-borne viral infections in the world, resulting in increased socio-economic burden. WHO has reported that 2.5 billion people are infected with dengue fever across the world, resulting in high mortalities in tropical and subtropical regions. The current article endeavors to present an overview of predicting dengue outbreaks through data-based machine-learning models. This artificial intelligence model uses real world data such as dengue surveillance, climatic variables, and epidemiological data and combines big data with machine learning algorithms to forecast dengue. Monitoring and predicting dengue incidences has been significantly enhanced through innovative approaches. This involves gathering data on various climatic factors, including temperature, rainfall, relative humidity, and wind speed, along with monthly records of dengue cases. The study functions as an efficient warning system, enabling the anticipation of dengue outbreaks. This early warning system not only alerts communities but also aids relevant authorities in implementing crucial preventive measures.</p>","PeriodicalId":17660,"journal":{"name":"Journal of Vector Borne Diseases","volume":" ","pages":"503-514"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of data-driven machine learning models and their potential role in predicting dengue outbreak.\",\"authors\":\"Bushra Mazhar, Nazish Mazhar Ali, Farkhanda Manzoor, Muhammad Kamran Khan, Muhammad Nasir, Muhammad Ramzan\",\"doi\":\"10.4103/0972-9062.393976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dengue fever is one of the most widespread vector-borne viral infections in the world, resulting in increased socio-economic burden. WHO has reported that 2.5 billion people are infected with dengue fever across the world, resulting in high mortalities in tropical and subtropical regions. The current article endeavors to present an overview of predicting dengue outbreaks through data-based machine-learning models. This artificial intelligence model uses real world data such as dengue surveillance, climatic variables, and epidemiological data and combines big data with machine learning algorithms to forecast dengue. Monitoring and predicting dengue incidences has been significantly enhanced through innovative approaches. This involves gathering data on various climatic factors, including temperature, rainfall, relative humidity, and wind speed, along with monthly records of dengue cases. The study functions as an efficient warning system, enabling the anticipation of dengue outbreaks. This early warning system not only alerts communities but also aids relevant authorities in implementing crucial preventive measures.</p>\",\"PeriodicalId\":17660,\"journal\":{\"name\":\"Journal of Vector Borne Diseases\",\"volume\":\" \",\"pages\":\"503-514\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vector Borne Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/0972-9062.393976\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vector Borne Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/0972-9062.393976","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Development of data-driven machine learning models and their potential role in predicting dengue outbreak.
Dengue fever is one of the most widespread vector-borne viral infections in the world, resulting in increased socio-economic burden. WHO has reported that 2.5 billion people are infected with dengue fever across the world, resulting in high mortalities in tropical and subtropical regions. The current article endeavors to present an overview of predicting dengue outbreaks through data-based machine-learning models. This artificial intelligence model uses real world data such as dengue surveillance, climatic variables, and epidemiological data and combines big data with machine learning algorithms to forecast dengue. Monitoring and predicting dengue incidences has been significantly enhanced through innovative approaches. This involves gathering data on various climatic factors, including temperature, rainfall, relative humidity, and wind speed, along with monthly records of dengue cases. The study functions as an efficient warning system, enabling the anticipation of dengue outbreaks. This early warning system not only alerts communities but also aids relevant authorities in implementing crucial preventive measures.
期刊介绍:
National Institute of Malaria Research on behalf of Indian Council of Medical Research (ICMR) publishes the Journal of Vector Borne Diseases. This Journal was earlier published as the Indian Journal of Malariology, a peer reviewed and open access biomedical journal in the field of vector borne diseases. The Journal publishes review articles, original research articles, short research communications, case reports of prime importance, letters to the editor in the field of vector borne diseases and their control.