关于利用纯化成分重组大肠杆菌核糖体的研究。

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hideki Taguchi
{"title":"关于利用纯化成分重组大肠杆菌核糖体的研究。","authors":"Hideki Taguchi","doi":"10.1093/jb/mvad121","DOIUrl":null,"url":null,"abstract":"<p><p>The ribosome, the protein synthesizing machinery composed of dozens of proteins and several ribosomal RNAs (rRNAs), is essential for life. In vitro reconstitution of the ribosome holds significance for understanding biosynthesis, applications in biotechnology and potential contributions to synthetic biology. There is a long history of in vitro reconstitution of bacterial ribosomes, originating in the 1970s when the 30S ribosome of Escherichia coli was reconstituted from the protein and rRNA components prepared from native ribosome. Since then, the reconstitution using in vitro transcribed rRNAs has been established, and more recently, the reconstitution using recombinant ribosomal proteins has also become possible. A recent report by Aoyama et al. (J. Biochem. 2022; 171:227-237), the reconstitution of the 50S ribosome using 33 recombinant ribosomal proteins, is a new leap toward complete reconstitution of the holo ribosome complex from recombinant proteins and in vitro transcribed rRNAs. This commentary also discusses future challenges.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"521-523"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the pursuit to reconstitute the Escherichia coli ribosome from purified components.\",\"authors\":\"Hideki Taguchi\",\"doi\":\"10.1093/jb/mvad121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ribosome, the protein synthesizing machinery composed of dozens of proteins and several ribosomal RNAs (rRNAs), is essential for life. In vitro reconstitution of the ribosome holds significance for understanding biosynthesis, applications in biotechnology and potential contributions to synthetic biology. There is a long history of in vitro reconstitution of bacterial ribosomes, originating in the 1970s when the 30S ribosome of Escherichia coli was reconstituted from the protein and rRNA components prepared from native ribosome. Since then, the reconstitution using in vitro transcribed rRNAs has been established, and more recently, the reconstitution using recombinant ribosomal proteins has also become possible. A recent report by Aoyama et al. (J. Biochem. 2022; 171:227-237), the reconstitution of the 50S ribosome using 33 recombinant ribosomal proteins, is a new leap toward complete reconstitution of the holo ribosome complex from recombinant proteins and in vitro transcribed rRNAs. This commentary also discusses future challenges.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"521-523\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvad121\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvad121","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核糖体是由数十种蛋白质和若干核糖体 RNA(rRNA)组成的蛋白质合成机器,对生命至关重要。体外重组核糖体对了解生物合成、生物技术应用以及合成生物学的潜在贡献具有重要意义。细菌核糖体的体外重组由来已久,起源于 20 世纪 70 年代,当时利用从原生核糖体制备的蛋白质和 rRNA 成分重组了大肠杆菌的 30S 核糖体。从那时起,利用体外转录的 rRNA 重组核糖体的方法已经确立,最近,利用重组核糖体蛋白重组核糖体也成为可能。Aoyama 等人最近的报告(J. Biochem. 2022; 171:227-237)称,利用 33 个重组核糖体蛋白重组了 50S 核糖体,这是利用重组蛋白和体外转录 rRNA 完全重组全核糖体复合物的新飞跃。本评论还讨论了未来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the pursuit to reconstitute the Escherichia coli ribosome from purified components.

The ribosome, the protein synthesizing machinery composed of dozens of proteins and several ribosomal RNAs (rRNAs), is essential for life. In vitro reconstitution of the ribosome holds significance for understanding biosynthesis, applications in biotechnology and potential contributions to synthetic biology. There is a long history of in vitro reconstitution of bacterial ribosomes, originating in the 1970s when the 30S ribosome of Escherichia coli was reconstituted from the protein and rRNA components prepared from native ribosome. Since then, the reconstitution using in vitro transcribed rRNAs has been established, and more recently, the reconstitution using recombinant ribosomal proteins has also become possible. A recent report by Aoyama et al. (J. Biochem. 2022; 171:227-237), the reconstitution of the 50S ribosome using 33 recombinant ribosomal proteins, is a new leap toward complete reconstitution of the holo ribosome complex from recombinant proteins and in vitro transcribed rRNAs. This commentary also discusses future challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信