嗜卤细菌 Halovibrio variabilis TG-5 对煤气化废水的高效絮凝预处理。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xin Sun, Gangsheng Zhang, Yamin Shi, Daling Zhu, Lin Cheng
{"title":"嗜卤细菌 Halovibrio variabilis TG-5 对煤气化废水的高效絮凝预处理。","authors":"Xin Sun, Gangsheng Zhang, Yamin Shi, Daling Zhu, Lin Cheng","doi":"10.1007/s00792-023-01328-w","DOIUrl":null,"url":null,"abstract":"<p><p>The isolated halophilic bacterial strain Halovibrio variabilis TG-5 showed a good performance in the pretreatment of coal gasification wastewater. With the optimum culture conditions of pH = 7, a temperature of 46 °C, and a salinity of 15%, the chemical oxygen demand and volatile phenol content of pretreated wastewater were decreased to 1721 mg/L and 94 mg/L, respectively. The removal rates of chemical oxygen demand and volatile phenol were over 90% and 70%, respectively. At the optimum salinity conditions of 15%, the total yield of intracellular compatible solutes and the extracellular transient released yield under hypotonic conditions were increased to 6.88 g/L and 3.45 g/L, respectively. The essential compatible solutes such as L-lysine, L-valine, and betaine were important in flocculation mechanism in wastewater pretreatment. This study provided a new method for pretreating coal gasification wastewater by halophilic microorganisms, and revealed the crucial roles of compatible solutes in the flocculation process.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient flocculation pretreatment of coal gasification wastewater by halophilic bacterium Halovibrio variabilis TG-5.\",\"authors\":\"Xin Sun, Gangsheng Zhang, Yamin Shi, Daling Zhu, Lin Cheng\",\"doi\":\"10.1007/s00792-023-01328-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The isolated halophilic bacterial strain Halovibrio variabilis TG-5 showed a good performance in the pretreatment of coal gasification wastewater. With the optimum culture conditions of pH = 7, a temperature of 46 °C, and a salinity of 15%, the chemical oxygen demand and volatile phenol content of pretreated wastewater were decreased to 1721 mg/L and 94 mg/L, respectively. The removal rates of chemical oxygen demand and volatile phenol were over 90% and 70%, respectively. At the optimum salinity conditions of 15%, the total yield of intracellular compatible solutes and the extracellular transient released yield under hypotonic conditions were increased to 6.88 g/L and 3.45 g/L, respectively. The essential compatible solutes such as L-lysine, L-valine, and betaine were important in flocculation mechanism in wastewater pretreatment. This study provided a new method for pretreating coal gasification wastewater by halophilic microorganisms, and revealed the crucial roles of compatible solutes in the flocculation process.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00792-023-01328-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-023-01328-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

分离出的嗜卤细菌菌株 Halovibrio variabilis TG-5 在煤气化废水预处理中表现出良好的性能。在 pH = 7、温度 46 ℃、盐度 15%的最佳培养条件下,预处理废水的化学需氧量和挥发酚含量分别降至 1721 mg/L 和 94 mg/L。化学需氧量和挥发酚的去除率分别超过 90% 和 70%。在最佳盐度为 15%的条件下,低渗条件下细胞内兼容溶质的总产量和细胞外瞬时释放产量分别增至 6.88 克/升和 3.45 克/升。L-赖氨酸、L-缬氨酸和甜菜碱等必需相容溶质在废水预处理的絮凝机制中具有重要作用。该研究为嗜卤微生物预处理煤气化废水提供了一种新方法,并揭示了相容溶质在絮凝过程中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient flocculation pretreatment of coal gasification wastewater by halophilic bacterium Halovibrio variabilis TG-5.

Efficient flocculation pretreatment of coal gasification wastewater by halophilic bacterium Halovibrio variabilis TG-5.

The isolated halophilic bacterial strain Halovibrio variabilis TG-5 showed a good performance in the pretreatment of coal gasification wastewater. With the optimum culture conditions of pH = 7, a temperature of 46 °C, and a salinity of 15%, the chemical oxygen demand and volatile phenol content of pretreated wastewater were decreased to 1721 mg/L and 94 mg/L, respectively. The removal rates of chemical oxygen demand and volatile phenol were over 90% and 70%, respectively. At the optimum salinity conditions of 15%, the total yield of intracellular compatible solutes and the extracellular transient released yield under hypotonic conditions were increased to 6.88 g/L and 3.45 g/L, respectively. The essential compatible solutes such as L-lysine, L-valine, and betaine were important in flocculation mechanism in wastewater pretreatment. This study provided a new method for pretreating coal gasification wastewater by halophilic microorganisms, and revealed the crucial roles of compatible solutes in the flocculation process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信