{"title":"持续暴露于高葡萄糖可诱导小鼠巨噬细胞中细胞衰老标记物的差异表达,但会损害对衰老细胞分泌组的免疫监视反应。","authors":"Bhawna Diwan, Rahul Yadav, Rohit Goyal, Rohit Sharma","doi":"10.1007/s10522-024-10092-z","DOIUrl":null,"url":null,"abstract":"<p><p>The influence of chronic diseases on various facets of macrophage cellular senescence is poorly understood. This study evaluated the impact of chronic hyperglycemia on the induction of cellular senescence and subsequent immunosurveillance functions in RAW264.7 macrophages. Macrophages were cultured under normal glucose (NG; 5 mM), high glucose (HG; 20 mM), and very high glucose (VHG; 40 mM) conditions and assessed for markers of cellular senescence. Hyperglycemia induced strong upregulation of SA-β-gal activity, and loss of PCNA and Lamin B1 gene expression while markers of cell cycle arrest generally decreased. Non-significant changes in SASP-related proteins were observed while ROS levels slightly decreased and mitochondrial membrane potential increased. Protein concentration on the exosome membrane surface and their stability appeared to increase under hyperglycemic conditions. However, when macrophages were exposed to the secretory media (SM) of senescent preadipocytes, a dramatic increase in the levels of all inflammatory proteins was recorded especially in the VHG group that was also accompanied by upregulation of NF-κB and NLRP3 gene expression. SM treatment to hyperglycemic macrophages activated the TLR-2/Myd88 pathway but decreased the expression of scavenger receptors RAGE, CD36, and Olr-1 while CD44 and CXCL16 expression increased. On exposure to LPS, a strong upregulation in NO, ROS, and inflammatory cytokines was observed. Together, these results suggest that primary markers of cellular senescence are aberrantly expressed under chronic hyperglycemic conditions in macrophages with no significant SASP activation. Nonetheless, hyperglycemia strongly deregulates macrophage functions leading to impaired immunosurveillance of senescent cells and aggravation of inflamm-aging. This work provides novel insights into how hyperglycemia-induced dysfunctions can impact the potency of macrophages to manage senescent cell burden in aging tissues.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"627-647"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustained exposure to high glucose induces differential expression of cellular senescence markers in murine macrophages but impairs immunosurveillance response to senescent cells secretome.\",\"authors\":\"Bhawna Diwan, Rahul Yadav, Rohit Goyal, Rohit Sharma\",\"doi\":\"10.1007/s10522-024-10092-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The influence of chronic diseases on various facets of macrophage cellular senescence is poorly understood. This study evaluated the impact of chronic hyperglycemia on the induction of cellular senescence and subsequent immunosurveillance functions in RAW264.7 macrophages. Macrophages were cultured under normal glucose (NG; 5 mM), high glucose (HG; 20 mM), and very high glucose (VHG; 40 mM) conditions and assessed for markers of cellular senescence. Hyperglycemia induced strong upregulation of SA-β-gal activity, and loss of PCNA and Lamin B1 gene expression while markers of cell cycle arrest generally decreased. Non-significant changes in SASP-related proteins were observed while ROS levels slightly decreased and mitochondrial membrane potential increased. Protein concentration on the exosome membrane surface and their stability appeared to increase under hyperglycemic conditions. However, when macrophages were exposed to the secretory media (SM) of senescent preadipocytes, a dramatic increase in the levels of all inflammatory proteins was recorded especially in the VHG group that was also accompanied by upregulation of NF-κB and NLRP3 gene expression. SM treatment to hyperglycemic macrophages activated the TLR-2/Myd88 pathway but decreased the expression of scavenger receptors RAGE, CD36, and Olr-1 while CD44 and CXCL16 expression increased. On exposure to LPS, a strong upregulation in NO, ROS, and inflammatory cytokines was observed. Together, these results suggest that primary markers of cellular senescence are aberrantly expressed under chronic hyperglycemic conditions in macrophages with no significant SASP activation. Nonetheless, hyperglycemia strongly deregulates macrophage functions leading to impaired immunosurveillance of senescent cells and aggravation of inflamm-aging. This work provides novel insights into how hyperglycemia-induced dysfunctions can impact the potency of macrophages to manage senescent cell burden in aging tissues.</p>\",\"PeriodicalId\":8909,\"journal\":{\"name\":\"Biogerontology\",\"volume\":\" \",\"pages\":\"627-647\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogerontology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10522-024-10092-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-024-10092-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Sustained exposure to high glucose induces differential expression of cellular senescence markers in murine macrophages but impairs immunosurveillance response to senescent cells secretome.
The influence of chronic diseases on various facets of macrophage cellular senescence is poorly understood. This study evaluated the impact of chronic hyperglycemia on the induction of cellular senescence and subsequent immunosurveillance functions in RAW264.7 macrophages. Macrophages were cultured under normal glucose (NG; 5 mM), high glucose (HG; 20 mM), and very high glucose (VHG; 40 mM) conditions and assessed for markers of cellular senescence. Hyperglycemia induced strong upregulation of SA-β-gal activity, and loss of PCNA and Lamin B1 gene expression while markers of cell cycle arrest generally decreased. Non-significant changes in SASP-related proteins were observed while ROS levels slightly decreased and mitochondrial membrane potential increased. Protein concentration on the exosome membrane surface and their stability appeared to increase under hyperglycemic conditions. However, when macrophages were exposed to the secretory media (SM) of senescent preadipocytes, a dramatic increase in the levels of all inflammatory proteins was recorded especially in the VHG group that was also accompanied by upregulation of NF-κB and NLRP3 gene expression. SM treatment to hyperglycemic macrophages activated the TLR-2/Myd88 pathway but decreased the expression of scavenger receptors RAGE, CD36, and Olr-1 while CD44 and CXCL16 expression increased. On exposure to LPS, a strong upregulation in NO, ROS, and inflammatory cytokines was observed. Together, these results suggest that primary markers of cellular senescence are aberrantly expressed under chronic hyperglycemic conditions in macrophages with no significant SASP activation. Nonetheless, hyperglycemia strongly deregulates macrophage functions leading to impaired immunosurveillance of senescent cells and aggravation of inflamm-aging. This work provides novel insights into how hyperglycemia-induced dysfunctions can impact the potency of macrophages to manage senescent cell burden in aging tissues.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.