来自地理适应性经验和机器学习卫星水深测量模型的全球和地方不确定性大小和空间模式

IF 6 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Kim Lowell, Yuri Rzhanov
{"title":"来自地理适应性经验和机器学习卫星水深测量模型的全球和地方不确定性大小和空间模式","authors":"Kim Lowell, Yuri Rzhanov","doi":"10.1080/15481603.2023.2297549","DOIUrl":null,"url":null,"abstract":"The spatial structure of local uncertainty of shallow-water satellite-derived bathymetry (SDB) relative to model type, imagery, and geographical adaptability was examined for an area near Key West,...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"12 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global and local magnitude and spatial pattern of uncertainty from geographically adaptive empirical and machine learning satellite-derived bathymetry models\",\"authors\":\"Kim Lowell, Yuri Rzhanov\",\"doi\":\"10.1080/15481603.2023.2297549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spatial structure of local uncertainty of shallow-water satellite-derived bathymetry (SDB) relative to model type, imagery, and geographical adaptability was examined for an area near Key West,...\",\"PeriodicalId\":55091,\"journal\":{\"name\":\"GIScience & Remote Sensing\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIScience & Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/15481603.2023.2297549\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIScience & Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/15481603.2023.2297549","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

该研究考察了基韦斯特附近地区浅水卫星水深测量(SDB)的局部不确定性与模型类型、图像和地理适应性之间的空间结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global and local magnitude and spatial pattern of uncertainty from geographically adaptive empirical and machine learning satellite-derived bathymetry models
The spatial structure of local uncertainty of shallow-water satellite-derived bathymetry (SDB) relative to model type, imagery, and geographical adaptability was examined for an area near Key West,...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
9.00%
发文量
84
审稿时长
6 months
期刊介绍: GIScience & Remote Sensing publishes original, peer-reviewed articles associated with geographic information systems (GIS), remote sensing of the environment (including digital image processing), geocomputation, spatial data mining, and geographic environmental modelling. Papers reflecting both basic and applied research are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信