{"title":"通过舒尔凸性扩展路径和循环的共性","authors":"Jang Soo Kim , Joonkyung Lee","doi":"10.1016/j.jctb.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <em>H</em> is <em>common</em> if the number of monochromatic copies of <em>H</em> in a 2-edge-colouring of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is asymptotically minimised by the random colouring, or equivalently, <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mi>W</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>−</mo><mi>W</mi><mo>)</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>e</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></msup></math></span> holds for every graphon <span><math><mi>W</mi><mo>:</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, where <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mo>.</mo><mo>)</mo></math></span><span> denotes the homomorphism density of the graph </span><em>H</em>. Paths and cycles being common is one of the earliest cornerstones in extremal graph theory, due to Mulholland and Smith (1959), Goodman (1959), and Sidorenko (1989).</p><p>We prove a graph homomorphism inequality that extends the commonality of paths and cycles. Namely, <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mi>W</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>−</mo><mi>W</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>t</mi></mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><msup><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow><mrow><mi>e</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></msup><mo>+</mo><msub><mrow><mi>t</mi></mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>W</mi><mo>)</mo></mrow><mrow><mi>e</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></msup></math></span> whenever <em>H</em> is a path or a cycle and <span><math><mi>W</mi><mo>:</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mi>R</mi></math></span><span> is a bounded symmetric measurable function.</span></p><p>This answers a question of Sidorenko from 1989, who proved a slightly weaker result for even-length paths to prove the commonality of odd cycles. Furthermore, it also settles a recent conjecture of Behague, Morrison, and Noel in a strong form, who asked if the inequality holds for graphons <em>W</em> and odd cycles <em>H</em><span>. Our proof uses Schur convexity of complete homogeneous symmetric functions, which may be of independent interest.</span></p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"166 ","pages":"Pages 109-122"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended commonality of paths and cycles via Schur convexity\",\"authors\":\"Jang Soo Kim , Joonkyung Lee\",\"doi\":\"10.1016/j.jctb.2023.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A graph <em>H</em> is <em>common</em> if the number of monochromatic copies of <em>H</em> in a 2-edge-colouring of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is asymptotically minimised by the random colouring, or equivalently, <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mi>W</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>−</mo><mi>W</mi><mo>)</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>e</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></msup></math></span> holds for every graphon <span><math><mi>W</mi><mo>:</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, where <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mo>.</mo><mo>)</mo></math></span><span> denotes the homomorphism density of the graph </span><em>H</em>. Paths and cycles being common is one of the earliest cornerstones in extremal graph theory, due to Mulholland and Smith (1959), Goodman (1959), and Sidorenko (1989).</p><p>We prove a graph homomorphism inequality that extends the commonality of paths and cycles. Namely, <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mi>W</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>−</mo><mi>W</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>t</mi></mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><msup><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow><mrow><mi>e</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></msup><mo>+</mo><msub><mrow><mi>t</mi></mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>W</mi><mo>)</mo></mrow><mrow><mi>e</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></msup></math></span> whenever <em>H</em> is a path or a cycle and <span><math><mi>W</mi><mo>:</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mi>R</mi></math></span><span> is a bounded symmetric measurable function.</span></p><p>This answers a question of Sidorenko from 1989, who proved a slightly weaker result for even-length paths to prove the commonality of odd cycles. Furthermore, it also settles a recent conjecture of Behague, Morrison, and Noel in a strong form, who asked if the inequality holds for graphons <em>W</em> and odd cycles <em>H</em><span>. Our proof uses Schur convexity of complete homogeneous symmetric functions, which may be of independent interest.</span></p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"166 \",\"pages\":\"Pages 109-122\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623001090\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623001090","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果完整图 Kn 的 2 边着色中 H 的单色副本数被随机着色渐近最小化,或者等价于 tH(W)+tH(1-W)≥21-e(H) 对于每个图元 W:[0,1]2→[0,1] 都成立,则图 H 是常见的,其中 tH(. )表示图 H 的同态密度。路径和循环的共通性是极值图理论最早的基石之一,归功于 Mulholland 和 Smith (1959)、Goodman (1959) 和 Sidorenko (1989)。也就是说,只要 H 是路径或循环,且 W:[0,1]2→R 是有界对称可测函数,tH(W)+tH(1-W)≥tK2(W)e(H)+tK2(1-W)e(H)。这回答了 Sidorenko 在 1989 年提出的一个问题,他针对偶数长度路径证明了一个稍弱的结果,以证明奇数循环的共性。此外,它还以强形式解决了贝哈格、莫里森和诺埃尔最近提出的一个猜想,他们问不等式是否对图元 W 和奇数循环 H 成立。
Extended commonality of paths and cycles via Schur convexity
A graph H is common if the number of monochromatic copies of H in a 2-edge-colouring of the complete graph is asymptotically minimised by the random colouring, or equivalently, holds for every graphon , where denotes the homomorphism density of the graph H. Paths and cycles being common is one of the earliest cornerstones in extremal graph theory, due to Mulholland and Smith (1959), Goodman (1959), and Sidorenko (1989).
We prove a graph homomorphism inequality that extends the commonality of paths and cycles. Namely, whenever H is a path or a cycle and is a bounded symmetric measurable function.
This answers a question of Sidorenko from 1989, who proved a slightly weaker result for even-length paths to prove the commonality of odd cycles. Furthermore, it also settles a recent conjecture of Behague, Morrison, and Noel in a strong form, who asked if the inequality holds for graphons W and odd cycles H. Our proof uses Schur convexity of complete homogeneous symmetric functions, which may be of independent interest.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.