{"title":"基于 PEI 改性金属有机框架 (MOF) 纳米粒子的基因递送载体的合成与评估。","authors":"Somayeh Khosrojerdi, Leila Gholami, Majid Khazaei, Alireza Hashemzadeh, Majid Darroudi, Reza Kazemi Oskuee","doi":"10.22038/IJBMS.2023.71892.15644","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Zirconium-based metal-organic frameworks (MOFs) nanostructures, due to their capability of easy surface modification, are considered interesting structures for delivery. In the present study, the surfaces of UIO-66 and NH2-UIO-66 MOFs were modified by polyethyleneimine (PEI) 10000 Da, and their efficiency for plasmid delivery was evaluated.</p><p><strong>Materials and methods: </strong>Two different approaches, were employed to prepare surface-modified nanoparticles. The physicochemical characteristics of the resulting nanoparticles, as well as their transfection efficiency and cytotoxicity, were investigated on the A549 cell line.</p><p><strong>Results: </strong>The sizes of DNA/nanocarriers for PEI-modified UIO-66 (PEI-UIO-66) were between 212-291 nm and 267-321 nm for PEI 6-bromohexanoic acid linked UIO-66 (PEI-HEX-UIO-66). The zeta potential of all was positive with the ranges of +16 to +20 mV and +23 to +26 mV for PEI-UIO-66 and PEI-HEX-UIO-66, respectively. Cellular assay results showed that the PEI linking method had a higher rate of gene transfection efficiency with minimal cytotoxicity than the wet impregnation method. The difference between transfection of modified nanoparticles compared to the PEI 10 kDa was not significant but the PEI-HEX-UIO-66 showed less cytotoxicity.</p><p><strong>Conclusion: </strong>The present study suggested that the post-synthetic modification of MOFs with PEI 10000 Da through EDC/NHS+6-bromohexanoic acid reaction can be considered as an effective approach for modifying MOFs' structure in order to obtain nanoparticles with better biological function in the gene delivery process.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790290/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis and evaluation of gene delivery vectors based on PEI-modified metal-organic framework (MOF) nanoparticles.\",\"authors\":\"Somayeh Khosrojerdi, Leila Gholami, Majid Khazaei, Alireza Hashemzadeh, Majid Darroudi, Reza Kazemi Oskuee\",\"doi\":\"10.22038/IJBMS.2023.71892.15644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Zirconium-based metal-organic frameworks (MOFs) nanostructures, due to their capability of easy surface modification, are considered interesting structures for delivery. In the present study, the surfaces of UIO-66 and NH2-UIO-66 MOFs were modified by polyethyleneimine (PEI) 10000 Da, and their efficiency for plasmid delivery was evaluated.</p><p><strong>Materials and methods: </strong>Two different approaches, were employed to prepare surface-modified nanoparticles. The physicochemical characteristics of the resulting nanoparticles, as well as their transfection efficiency and cytotoxicity, were investigated on the A549 cell line.</p><p><strong>Results: </strong>The sizes of DNA/nanocarriers for PEI-modified UIO-66 (PEI-UIO-66) were between 212-291 nm and 267-321 nm for PEI 6-bromohexanoic acid linked UIO-66 (PEI-HEX-UIO-66). The zeta potential of all was positive with the ranges of +16 to +20 mV and +23 to +26 mV for PEI-UIO-66 and PEI-HEX-UIO-66, respectively. Cellular assay results showed that the PEI linking method had a higher rate of gene transfection efficiency with minimal cytotoxicity than the wet impregnation method. The difference between transfection of modified nanoparticles compared to the PEI 10 kDa was not significant but the PEI-HEX-UIO-66 showed less cytotoxicity.</p><p><strong>Conclusion: </strong>The present study suggested that the post-synthetic modification of MOFs with PEI 10000 Da through EDC/NHS+6-bromohexanoic acid reaction can be considered as an effective approach for modifying MOFs' structure in order to obtain nanoparticles with better biological function in the gene delivery process.</p>\",\"PeriodicalId\":14495,\"journal\":{\"name\":\"Iranian Journal of Basic Medical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790290/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Basic Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.22038/IJBMS.2023.71892.15644\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/IJBMS.2023.71892.15644","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Synthesis and evaluation of gene delivery vectors based on PEI-modified metal-organic framework (MOF) nanoparticles.
Objectives: Zirconium-based metal-organic frameworks (MOFs) nanostructures, due to their capability of easy surface modification, are considered interesting structures for delivery. In the present study, the surfaces of UIO-66 and NH2-UIO-66 MOFs were modified by polyethyleneimine (PEI) 10000 Da, and their efficiency for plasmid delivery was evaluated.
Materials and methods: Two different approaches, were employed to prepare surface-modified nanoparticles. The physicochemical characteristics of the resulting nanoparticles, as well as their transfection efficiency and cytotoxicity, were investigated on the A549 cell line.
Results: The sizes of DNA/nanocarriers for PEI-modified UIO-66 (PEI-UIO-66) were between 212-291 nm and 267-321 nm for PEI 6-bromohexanoic acid linked UIO-66 (PEI-HEX-UIO-66). The zeta potential of all was positive with the ranges of +16 to +20 mV and +23 to +26 mV for PEI-UIO-66 and PEI-HEX-UIO-66, respectively. Cellular assay results showed that the PEI linking method had a higher rate of gene transfection efficiency with minimal cytotoxicity than the wet impregnation method. The difference between transfection of modified nanoparticles compared to the PEI 10 kDa was not significant but the PEI-HEX-UIO-66 showed less cytotoxicity.
Conclusion: The present study suggested that the post-synthetic modification of MOFs with PEI 10000 Da through EDC/NHS+6-bromohexanoic acid reaction can be considered as an effective approach for modifying MOFs' structure in order to obtain nanoparticles with better biological function in the gene delivery process.
期刊介绍:
The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.