Yong-Xin Luo, Xu Gong, Zhi-Cheng Su, Jin-Feng Mo, Dong-Li Li, Ri-Hui Wu, Jing-Wei Jin, Ming Lang, Jin-Ping Wang, Xue-Tao Xu, Li-She Gan
{"title":"从Orthosiphon aristatus中分离、改造结构并研究其抗类风湿关节炎活性。","authors":"Yong-Xin Luo, Xu Gong, Zhi-Cheng Su, Jin-Feng Mo, Dong-Li Li, Ri-Hui Wu, Jing-Wei Jin, Ming Lang, Jin-Ping Wang, Xue-Tao Xu, Li-She Gan","doi":"10.1080/14756366.2023.2296355","DOIUrl":null,"url":null,"abstract":"<p><p><i>Orthosiphon aristatus</i> is a well-known folkloric medicine and herb for Guangdong soup for the treatment of rheumatism in China. Eight isopimarane-type and migrated pimarane-type diterpenoids (<b>1</b>-<b>8</b>), including a new one with a rarely occurring α,β-unsaturated diketone C-ring, were isolated from <i>O. aristatus</i>. Their structures were determined by spectroscopic methods and quantum chemical calculations. Furthermore, the most abundant compound, orthosiphol K, was structurally modified by modern synthetic techniques to give seven new derivatives (<b>9-15</b>). The anti-rheumatoid arthritis activity of these diterpenoids were evaluated on a TNF-α induced MH7A human rheumatoid fibroblast-like synoviocyte model. Compound <b>10</b> showed the most potent activity among these compounds. Based on their inhibitory effects on the release levels of IL-1β, the preliminary structure-activity relationships were concluded. Furthermore, western blot analysis revealed that <b>10</b> could increase the expression of IκBα and decrease the expression of NF-κB p65, and the expression levels of COX-2 and NLRP3 proteins were consequently down-regulated.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798283/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isolation, structure modification, and anti-rheumatoid arthritis activity of isopimarane-type diterpenoids from <i>Orthosiphon aristatus</i>.\",\"authors\":\"Yong-Xin Luo, Xu Gong, Zhi-Cheng Su, Jin-Feng Mo, Dong-Li Li, Ri-Hui Wu, Jing-Wei Jin, Ming Lang, Jin-Ping Wang, Xue-Tao Xu, Li-She Gan\",\"doi\":\"10.1080/14756366.2023.2296355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Orthosiphon aristatus</i> is a well-known folkloric medicine and herb for Guangdong soup for the treatment of rheumatism in China. Eight isopimarane-type and migrated pimarane-type diterpenoids (<b>1</b>-<b>8</b>), including a new one with a rarely occurring α,β-unsaturated diketone C-ring, were isolated from <i>O. aristatus</i>. Their structures were determined by spectroscopic methods and quantum chemical calculations. Furthermore, the most abundant compound, orthosiphol K, was structurally modified by modern synthetic techniques to give seven new derivatives (<b>9-15</b>). The anti-rheumatoid arthritis activity of these diterpenoids were evaluated on a TNF-α induced MH7A human rheumatoid fibroblast-like synoviocyte model. Compound <b>10</b> showed the most potent activity among these compounds. Based on their inhibitory effects on the release levels of IL-1β, the preliminary structure-activity relationships were concluded. Furthermore, western blot analysis revealed that <b>10</b> could increase the expression of IκBα and decrease the expression of NF-κB p65, and the expression levels of COX-2 and NLRP3 proteins were consequently down-regulated.</p>\",\"PeriodicalId\":15769,\"journal\":{\"name\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798283/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14756366.2023.2296355\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2023.2296355","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Isolation, structure modification, and anti-rheumatoid arthritis activity of isopimarane-type diterpenoids from Orthosiphon aristatus.
Orthosiphon aristatus is a well-known folkloric medicine and herb for Guangdong soup for the treatment of rheumatism in China. Eight isopimarane-type and migrated pimarane-type diterpenoids (1-8), including a new one with a rarely occurring α,β-unsaturated diketone C-ring, were isolated from O. aristatus. Their structures were determined by spectroscopic methods and quantum chemical calculations. Furthermore, the most abundant compound, orthosiphol K, was structurally modified by modern synthetic techniques to give seven new derivatives (9-15). The anti-rheumatoid arthritis activity of these diterpenoids were evaluated on a TNF-α induced MH7A human rheumatoid fibroblast-like synoviocyte model. Compound 10 showed the most potent activity among these compounds. Based on their inhibitory effects on the release levels of IL-1β, the preliminary structure-activity relationships were concluded. Furthermore, western blot analysis revealed that 10 could increase the expression of IκBα and decrease the expression of NF-κB p65, and the expression levels of COX-2 and NLRP3 proteins were consequently down-regulated.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.