纤维蛋白原 gamma 链中的一个新型错义突变(FGG c.1168G > T)导致先天性低纤维蛋白原血症伴出血表型。

IF 2.7 3区 生物学
Nuo Xu, Liping Zheng, Zhehao Dai, Jun Zhu, Peng Xie, Shun Yang, Fei Chen
{"title":"纤维蛋白原 gamma 链中的一个新型错义突变(FGG c.1168G > T)导致先天性低纤维蛋白原血症伴出血表型。","authors":"Nuo Xu, Liping Zheng, Zhehao Dai, Jun Zhu, Peng Xie, Shun Yang, Fei Chen","doi":"10.1186/s41065-024-00308-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fibrinogen plays pivotal roles in multiple biological processes. Genetic mutation of the fibrinogen coding genes can result in congenital fibrinogen disorders (CFDs). We identified a novel heterozygous missense mutation, FGG c.1168G > T (NCBI NM_000509.6), and conducted expression studies and functional analyses to explore the influence on fibrinogen synthesis, secretion, and polymerization.</p><p><strong>Methods: </strong>Coagulation tests were performed on the patients to detect the fibrinogen concentration. Whole-exome sequencing (WES) and Sanger sequencing were employed to detect the novel mutation. Recombinant fibrinogen-producing Chinese hamster ovary (CHO) cell lines were built to examine the recombinant fibrinogen synthesis and secretion by western blotting and enzyme-linked immunosorbent assay (ELISA). The functional analysis of fibrinogen was performed by thrombin-catalyzed fibrin polymerization assay. In silico molecular analyses were carried out to elucidate the potential molecular mechanisms.</p><p><strong>Results: </strong>The clinical manifestations, medical history, and laboratory tests indicated the diagnosis of hypodysfibrinogenemia with bleeding phenotype in two patients. The WES and Sanger sequencing revealed that they shared the same heterozygous missense mutation, FGG c.1168G > T. In the expression studies and functional analysis, the missense mutation impaired the recombinant fibrinogen's synthesis, secretion, and polymerization. Furthermore, the in silico analyses indicated novel mutation led to the hydrogen bond substitution.</p><p><strong>Conclusion: </strong>The study highlighted that the novel heterozygous missense mutation, FGG c.1168G > T, would change the protein secondary structure, impair the \"A: a\" interaction, and consequently deteriorate the fibrinogen synthesis, secretion, and polymerization.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795222/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel missense mutation (FGG c.1168G > T) in the gamma chain of fibrinogen causing congenital hypodysfibrinogenemia with bleeding phenotype.\",\"authors\":\"Nuo Xu, Liping Zheng, Zhehao Dai, Jun Zhu, Peng Xie, Shun Yang, Fei Chen\",\"doi\":\"10.1186/s41065-024-00308-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Fibrinogen plays pivotal roles in multiple biological processes. Genetic mutation of the fibrinogen coding genes can result in congenital fibrinogen disorders (CFDs). We identified a novel heterozygous missense mutation, FGG c.1168G > T (NCBI NM_000509.6), and conducted expression studies and functional analyses to explore the influence on fibrinogen synthesis, secretion, and polymerization.</p><p><strong>Methods: </strong>Coagulation tests were performed on the patients to detect the fibrinogen concentration. Whole-exome sequencing (WES) and Sanger sequencing were employed to detect the novel mutation. Recombinant fibrinogen-producing Chinese hamster ovary (CHO) cell lines were built to examine the recombinant fibrinogen synthesis and secretion by western blotting and enzyme-linked immunosorbent assay (ELISA). The functional analysis of fibrinogen was performed by thrombin-catalyzed fibrin polymerization assay. In silico molecular analyses were carried out to elucidate the potential molecular mechanisms.</p><p><strong>Results: </strong>The clinical manifestations, medical history, and laboratory tests indicated the diagnosis of hypodysfibrinogenemia with bleeding phenotype in two patients. The WES and Sanger sequencing revealed that they shared the same heterozygous missense mutation, FGG c.1168G > T. In the expression studies and functional analysis, the missense mutation impaired the recombinant fibrinogen's synthesis, secretion, and polymerization. Furthermore, the in silico analyses indicated novel mutation led to the hydrogen bond substitution.</p><p><strong>Conclusion: </strong>The study highlighted that the novel heterozygous missense mutation, FGG c.1168G > T, would change the protein secondary structure, impair the \\\"A: a\\\" interaction, and consequently deteriorate the fibrinogen synthesis, secretion, and polymerization.</p>\",\"PeriodicalId\":12862,\"journal\":{\"name\":\"Hereditas\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795222/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hereditas\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s41065-024-00308-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-024-00308-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:纤维蛋白原在多种生物过程中发挥着关键作用。纤维蛋白原编码基因的基因突变可导致先天性纤维蛋白原紊乱(CFDs)。我们发现了一个新的杂合子错义突变 FGG c.1168G > T(NCBI NM_000509.6),并进行了表达研究和功能分析,以探讨其对纤维蛋白原合成、分泌和聚合的影响:方法:对患者进行凝血试验,检测纤维蛋白原浓度。采用全外显子组测序(WES)和桑格测序检测新型突变。建立了可产生重组纤维蛋白原的中国仓鼠卵巢(CHO)细胞系,通过免疫印迹法和酶联免疫吸附法(ELISA)检测重组纤维蛋白原的合成和分泌。凝血酶催化纤维蛋白聚合试验对纤维蛋白原进行了功能分析。为阐明潜在的分子机制,还进行了硅分子分析:结果:根据临床表现、病史和实验室检查,两名患者被诊断为出血表型低纤维蛋白原血症。WES和Sanger测序显示,他们具有相同的杂合错义突变FGG c.1168G > T。在表达研究和功能分析中,该错义突变损害了重组纤维蛋白原的合成、分泌和聚合。此外,硅学分析表明,新型突变导致了氢键置换:研究结果表明,FGG c.1168G > T 这一新型杂合错义突变会改变蛋白质的二级结构,损害 "A:a "相互作用,从而影响纤维蛋白原的合成、分泌和聚合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel missense mutation (FGG c.1168G > T) in the gamma chain of fibrinogen causing congenital hypodysfibrinogenemia with bleeding phenotype.

Background: Fibrinogen plays pivotal roles in multiple biological processes. Genetic mutation of the fibrinogen coding genes can result in congenital fibrinogen disorders (CFDs). We identified a novel heterozygous missense mutation, FGG c.1168G > T (NCBI NM_000509.6), and conducted expression studies and functional analyses to explore the influence on fibrinogen synthesis, secretion, and polymerization.

Methods: Coagulation tests were performed on the patients to detect the fibrinogen concentration. Whole-exome sequencing (WES) and Sanger sequencing were employed to detect the novel mutation. Recombinant fibrinogen-producing Chinese hamster ovary (CHO) cell lines were built to examine the recombinant fibrinogen synthesis and secretion by western blotting and enzyme-linked immunosorbent assay (ELISA). The functional analysis of fibrinogen was performed by thrombin-catalyzed fibrin polymerization assay. In silico molecular analyses were carried out to elucidate the potential molecular mechanisms.

Results: The clinical manifestations, medical history, and laboratory tests indicated the diagnosis of hypodysfibrinogenemia with bleeding phenotype in two patients. The WES and Sanger sequencing revealed that they shared the same heterozygous missense mutation, FGG c.1168G > T. In the expression studies and functional analysis, the missense mutation impaired the recombinant fibrinogen's synthesis, secretion, and polymerization. Furthermore, the in silico analyses indicated novel mutation led to the hydrogen bond substitution.

Conclusion: The study highlighted that the novel heterozygous missense mutation, FGG c.1168G > T, would change the protein secondary structure, impair the "A: a" interaction, and consequently deteriorate the fibrinogen synthesis, secretion, and polymerization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hereditas
Hereditas Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍: For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信