选择和评估滚动接触条件下胎面橡胶材料超弹性模型的新方法

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE
Xueliang Gao , Yingming Wang
{"title":"选择和评估滚动接触条件下胎面橡胶材料超弹性模型的新方法","authors":"Xueliang Gao ,&nbsp;Yingming Wang","doi":"10.1080/1023666X.2023.2300904","DOIUrl":null,"url":null,"abstract":"<div><p>The selection and evaluation of the hyperelastic model of tread rubber material were of great value and significance to the clarification and application of the mechanical properties of tread rubber material. In this article, a non-contact tread rubber material rolling test bench was established. The improved digital image correlation method was used to calculate the strain rate distribution of the marked point under different test conditions. Combined with the stress distribution of the marked point, the rolling dynamic stress-strain characteristics of tread rubber material were obtained. Based on rubber material models under different tensile test modes, the parameter inversion identification of the hyperelastic model was completed, and the influence of the tensile test mode on the parameter inversion of the tread rubber hyperelastic model was revealed. A new method for selecting and evaluating the hyperelastic model of tread rubber material under rolling contact conditions was proposed. The selection criterion for the hyperelastic model of tread rubber material was developed under different rolling conditions. The experimental and analytical results show that the nonlinear degree of the constitutive relation of the hyperelastic model decreased with the increase in rolling speed. Compared with hyperelastic models under different tensile modes, the fitting error of the Yeoh model was less than 3%, and the overall fitting error of the Yeoh model was less than 2%. Therefore, the Yeoh model had better stability and accuracy and was more suitable for describing the rolling mechanical properties of tread rubber under rolling contact conditions.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 1","pages":"Pages 15-41"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new method for selecting and evaluating the hyperelastic model of tread rubber material under rolling contact condition\",\"authors\":\"Xueliang Gao ,&nbsp;Yingming Wang\",\"doi\":\"10.1080/1023666X.2023.2300904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The selection and evaluation of the hyperelastic model of tread rubber material were of great value and significance to the clarification and application of the mechanical properties of tread rubber material. In this article, a non-contact tread rubber material rolling test bench was established. The improved digital image correlation method was used to calculate the strain rate distribution of the marked point under different test conditions. Combined with the stress distribution of the marked point, the rolling dynamic stress-strain characteristics of tread rubber material were obtained. Based on rubber material models under different tensile test modes, the parameter inversion identification of the hyperelastic model was completed, and the influence of the tensile test mode on the parameter inversion of the tread rubber hyperelastic model was revealed. A new method for selecting and evaluating the hyperelastic model of tread rubber material under rolling contact conditions was proposed. The selection criterion for the hyperelastic model of tread rubber material was developed under different rolling conditions. The experimental and analytical results show that the nonlinear degree of the constitutive relation of the hyperelastic model decreased with the increase in rolling speed. Compared with hyperelastic models under different tensile modes, the fitting error of the Yeoh model was less than 3%, and the overall fitting error of the Yeoh model was less than 2%. Therefore, the Yeoh model had better stability and accuracy and was more suitable for describing the rolling mechanical properties of tread rubber under rolling contact conditions.</p></div>\",\"PeriodicalId\":14236,\"journal\":{\"name\":\"International Journal of Polymer Analysis and Characterization\",\"volume\":\"29 1\",\"pages\":\"Pages 15-41\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Analysis and Characterization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000040\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000040","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

胎面橡胶材料超弹性模型的选择和评价对胎面橡胶力学性能的阐明和应用具有重要价值和意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for selecting and evaluating the hyperelastic model of tread rubber material under rolling contact condition

The selection and evaluation of the hyperelastic model of tread rubber material were of great value and significance to the clarification and application of the mechanical properties of tread rubber material. In this article, a non-contact tread rubber material rolling test bench was established. The improved digital image correlation method was used to calculate the strain rate distribution of the marked point under different test conditions. Combined with the stress distribution of the marked point, the rolling dynamic stress-strain characteristics of tread rubber material were obtained. Based on rubber material models under different tensile test modes, the parameter inversion identification of the hyperelastic model was completed, and the influence of the tensile test mode on the parameter inversion of the tread rubber hyperelastic model was revealed. A new method for selecting and evaluating the hyperelastic model of tread rubber material under rolling contact conditions was proposed. The selection criterion for the hyperelastic model of tread rubber material was developed under different rolling conditions. The experimental and analytical results show that the nonlinear degree of the constitutive relation of the hyperelastic model decreased with the increase in rolling speed. Compared with hyperelastic models under different tensile modes, the fitting error of the Yeoh model was less than 3%, and the overall fitting error of the Yeoh model was less than 2%. Therefore, the Yeoh model had better stability and accuracy and was more suitable for describing the rolling mechanical properties of tread rubber under rolling contact conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
37
审稿时长
1.6 months
期刊介绍: The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization: Characterization and analysis of new and existing polymers and polymeric-based materials. Design and evaluation of analytical instrumentation and physical testing equipment. Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution. Using separation, spectroscopic, and scattering techniques. Surface characterization of polymeric materials. Measurement of solution and bulk properties and behavior of polymers. Studies involving structure-property-processing relationships, and polymer aging. Analysis of oligomeric materials. Analysis of polymer additives and decomposition products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信