{"title":"以 PRRP 为中轴的高治疗指数抗菌肽的设计、生物学特性和抗菌机制","authors":"Shuang Yu, Boyan Jia, Ying Zhang, Yue Yu, Zhihua Pei, Hongxia Ma","doi":"10.1038/s41429-023-00697-w","DOIUrl":null,"url":null,"abstract":"As the important components of biological innate immunity, antimicrobial peptides (AMPs) were found in a variety of organisms including insects, plants, animals, bacteria, fungi, etc. However, high hemolytic activity, high toxicity, and poor stability of natural AMPs hinder serious their application as therapeutic agents. To overcome these problems, in this study we use PRRP as a central axis, and peptides were designed based on the sequence template XRRXXRXPRRPXRXXRRX-NH2, where X represents a hydrophobic amino acid like Phe (F), Ile (I), Val (V), and Leu (L). The designed peptides LR18, FR18, and IR18 showed effective antimicrobial activity against some Gram-positive bacteria and Gram-negative bacteria, low cytotoxicity to mammalian cells, and had a tendency to form α-helical structures in membrane-mimetic environments. Among them, peptide LR18 (X: L) showed the highest geometric mean average treatment index (GMTI = 42.7) against Gram-negative bacteria, and FR18 (X: L) showed the highest GMTI (22.86) against Gram-positive bacteria. LR18 and FR18 also showed better salt, temperature, pH, and trypsin stability. LR18 and FR18 exert their antimicrobial effects mainly through destroying bacteria cell membrane. Briefly, peptide LR18 and FR18 have the potential to serve as a therapeutic agent to reduce antibiotic resistance owing to its high therapeutic index and great stability.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"77 3","pages":"170-181"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, biological characteristics, and antibacterial mechanism of high therapeutic index antimicrobial peptides with PRRP as central axis\",\"authors\":\"Shuang Yu, Boyan Jia, Ying Zhang, Yue Yu, Zhihua Pei, Hongxia Ma\",\"doi\":\"10.1038/s41429-023-00697-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the important components of biological innate immunity, antimicrobial peptides (AMPs) were found in a variety of organisms including insects, plants, animals, bacteria, fungi, etc. However, high hemolytic activity, high toxicity, and poor stability of natural AMPs hinder serious their application as therapeutic agents. To overcome these problems, in this study we use PRRP as a central axis, and peptides were designed based on the sequence template XRRXXRXPRRPXRXXRRX-NH2, where X represents a hydrophobic amino acid like Phe (F), Ile (I), Val (V), and Leu (L). The designed peptides LR18, FR18, and IR18 showed effective antimicrobial activity against some Gram-positive bacteria and Gram-negative bacteria, low cytotoxicity to mammalian cells, and had a tendency to form α-helical structures in membrane-mimetic environments. Among them, peptide LR18 (X: L) showed the highest geometric mean average treatment index (GMTI = 42.7) against Gram-negative bacteria, and FR18 (X: L) showed the highest GMTI (22.86) against Gram-positive bacteria. LR18 and FR18 also showed better salt, temperature, pH, and trypsin stability. LR18 and FR18 exert their antimicrobial effects mainly through destroying bacteria cell membrane. Briefly, peptide LR18 and FR18 have the potential to serve as a therapeutic agent to reduce antibiotic resistance owing to its high therapeutic index and great stability.\",\"PeriodicalId\":54884,\"journal\":{\"name\":\"Journal of Antibiotics\",\"volume\":\"77 3\",\"pages\":\"170-181\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antibiotics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41429-023-00697-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-023-00697-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Design, biological characteristics, and antibacterial mechanism of high therapeutic index antimicrobial peptides with PRRP as central axis
As the important components of biological innate immunity, antimicrobial peptides (AMPs) were found in a variety of organisms including insects, plants, animals, bacteria, fungi, etc. However, high hemolytic activity, high toxicity, and poor stability of natural AMPs hinder serious their application as therapeutic agents. To overcome these problems, in this study we use PRRP as a central axis, and peptides were designed based on the sequence template XRRXXRXPRRPXRXXRRX-NH2, where X represents a hydrophobic amino acid like Phe (F), Ile (I), Val (V), and Leu (L). The designed peptides LR18, FR18, and IR18 showed effective antimicrobial activity against some Gram-positive bacteria and Gram-negative bacteria, low cytotoxicity to mammalian cells, and had a tendency to form α-helical structures in membrane-mimetic environments. Among them, peptide LR18 (X: L) showed the highest geometric mean average treatment index (GMTI = 42.7) against Gram-negative bacteria, and FR18 (X: L) showed the highest GMTI (22.86) against Gram-positive bacteria. LR18 and FR18 also showed better salt, temperature, pH, and trypsin stability. LR18 and FR18 exert their antimicrobial effects mainly through destroying bacteria cell membrane. Briefly, peptide LR18 and FR18 have the potential to serve as a therapeutic agent to reduce antibiotic resistance owing to its high therapeutic index and great stability.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.