Facundo Tabbita, Karim Ammar, María Itria Ibba, Francisco Andrade, Marco Maccaferri, Maria Corinna Sanguineti, Roberto Tuberosa, Carlos Guzmán
{"title":"对热胁迫的响应和谷蛋白等位基因变异对硬质小麦品质性状的影响","authors":"Facundo Tabbita, Karim Ammar, María Itria Ibba, Francisco Andrade, Marco Maccaferri, Maria Corinna Sanguineti, Roberto Tuberosa, Carlos Guzmán","doi":"10.1111/jac.12686","DOIUrl":null,"url":null,"abstract":"<p>In the context of climate change, high temperature is one of the main abiotic stresses hampering durum wheat production. Through the characterization of an international panel of 271 genotypes, this study investigates the effects of heat stress on quality traits and identifies which glutenins (<i>Glu-1</i>, <i>Glu-2</i> and <i>Glu-3</i> loci) alleles are the most important to obtain high gluten strength under optimal and high temperature conditions. In parallel with the wide variability observed in the panel, the genotype and environmental effects, including their interaction, showed highly significant effect on test weight, thousand kernel weight, grain protein content (GPC), sodium dodecyl sulphate sedimentation volume (SDSS) and SDSS index. Only one genotype maintained test weight and thousand kernel weight under heat-stress conditions whereas for GPC, SDSS and SDSS index, most genotypes increased values. All <i>Glu</i> loci had significant effects on grain protein content (with the exception of <i>Glu-B2</i>), SDSS and SDSS Index. None of the <i>Glu</i> loci interacted with the environment or years under study. Among the identified alleles, <i>Glu-A1b, Glu-B1an, Glu-B1a, Glu-B2a, Glu-A3a.x, Glu-A3d, Glu-B3a and Glu-B3ax</i> (including the LMW-2 pattern) were associated with high values for SDSS and SDSS Index. Genotypes identified in this study, with good performances under optimal and high temperature growing conditions, could be useful for breeding programs. The non-interaction of the <i>Glu</i> loci with the environment facilitates the introgression of desired alleles regardless of high growing temperatures.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jac.12686","citationCount":"0","resultStr":"{\"title\":\"Response to heat stress and glutenins allelic variation effects on quality traits in durum wheat\",\"authors\":\"Facundo Tabbita, Karim Ammar, María Itria Ibba, Francisco Andrade, Marco Maccaferri, Maria Corinna Sanguineti, Roberto Tuberosa, Carlos Guzmán\",\"doi\":\"10.1111/jac.12686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the context of climate change, high temperature is one of the main abiotic stresses hampering durum wheat production. Through the characterization of an international panel of 271 genotypes, this study investigates the effects of heat stress on quality traits and identifies which glutenins (<i>Glu-1</i>, <i>Glu-2</i> and <i>Glu-3</i> loci) alleles are the most important to obtain high gluten strength under optimal and high temperature conditions. In parallel with the wide variability observed in the panel, the genotype and environmental effects, including their interaction, showed highly significant effect on test weight, thousand kernel weight, grain protein content (GPC), sodium dodecyl sulphate sedimentation volume (SDSS) and SDSS index. Only one genotype maintained test weight and thousand kernel weight under heat-stress conditions whereas for GPC, SDSS and SDSS index, most genotypes increased values. All <i>Glu</i> loci had significant effects on grain protein content (with the exception of <i>Glu-B2</i>), SDSS and SDSS Index. None of the <i>Glu</i> loci interacted with the environment or years under study. Among the identified alleles, <i>Glu-A1b, Glu-B1an, Glu-B1a, Glu-B2a, Glu-A3a.x, Glu-A3d, Glu-B3a and Glu-B3ax</i> (including the LMW-2 pattern) were associated with high values for SDSS and SDSS Index. Genotypes identified in this study, with good performances under optimal and high temperature growing conditions, could be useful for breeding programs. The non-interaction of the <i>Glu</i> loci with the environment facilitates the introgression of desired alleles regardless of high growing temperatures.</p>\",\"PeriodicalId\":14864,\"journal\":{\"name\":\"Journal of Agronomy and Crop Science\",\"volume\":\"210 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jac.12686\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agronomy and Crop Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jac.12686\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.12686","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Response to heat stress and glutenins allelic variation effects on quality traits in durum wheat
In the context of climate change, high temperature is one of the main abiotic stresses hampering durum wheat production. Through the characterization of an international panel of 271 genotypes, this study investigates the effects of heat stress on quality traits and identifies which glutenins (Glu-1, Glu-2 and Glu-3 loci) alleles are the most important to obtain high gluten strength under optimal and high temperature conditions. In parallel with the wide variability observed in the panel, the genotype and environmental effects, including their interaction, showed highly significant effect on test weight, thousand kernel weight, grain protein content (GPC), sodium dodecyl sulphate sedimentation volume (SDSS) and SDSS index. Only one genotype maintained test weight and thousand kernel weight under heat-stress conditions whereas for GPC, SDSS and SDSS index, most genotypes increased values. All Glu loci had significant effects on grain protein content (with the exception of Glu-B2), SDSS and SDSS Index. None of the Glu loci interacted with the environment or years under study. Among the identified alleles, Glu-A1b, Glu-B1an, Glu-B1a, Glu-B2a, Glu-A3a.x, Glu-A3d, Glu-B3a and Glu-B3ax (including the LMW-2 pattern) were associated with high values for SDSS and SDSS Index. Genotypes identified in this study, with good performances under optimal and high temperature growing conditions, could be useful for breeding programs. The non-interaction of the Glu loci with the environment facilitates the introgression of desired alleles regardless of high growing temperatures.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.