Priyanka A. Jadhav, Arti Hole, Arvind Ingle, Rukmini Govekar, Hemanth Noothalapati, C. Murali Krishna
{"title":"血清拉曼光谱:评估实验致癌过程中的肿瘤负荷变化。","authors":"Priyanka A. Jadhav, Arti Hole, Arvind Ingle, Rukmini Govekar, Hemanth Noothalapati, C. Murali Krishna","doi":"10.1002/jbio.202300424","DOIUrl":null,"url":null,"abstract":"<p>Several serum Raman spectroscopy (RS) studies have demonstrated its potential as an oral cancer screening tool. This study investigates influence of low tumour load (LTL) and high tumour load (HTL) on serum RS using hamster buccal pouch model of experimental oral carcinogenesis. Sera of untreated control, LTL, and HTL groups at week intervals during malignant transformation were employed. Serum Raman spectra were subjected to multivariate analyses—principal component analysis, principal component-based linear discriminant analysis (for stratification of study groups), and multivariate curve resolution-alternating least squares (MCR-ALS) (to comprehend biomolecular differences). Multivariate analysis revealed misclassifications between LTL and HTL at all week intervals. MCR-ALS components showed statistically significant abundances between control versus LTL and control versus HTL, but could not discern LTL and HTL. MCR-ALS components exhibited spectral mixtures of proteins, lipids, heme and nucleic acids. Thus, these findings support use of serum RS as a screening tool as varying tumour load is not a confounding factor influencing the technique.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serum Raman spectroscopy: Evaluation of tumour load variations in experimental carcinogenesis\",\"authors\":\"Priyanka A. Jadhav, Arti Hole, Arvind Ingle, Rukmini Govekar, Hemanth Noothalapati, C. Murali Krishna\",\"doi\":\"10.1002/jbio.202300424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Several serum Raman spectroscopy (RS) studies have demonstrated its potential as an oral cancer screening tool. This study investigates influence of low tumour load (LTL) and high tumour load (HTL) on serum RS using hamster buccal pouch model of experimental oral carcinogenesis. Sera of untreated control, LTL, and HTL groups at week intervals during malignant transformation were employed. Serum Raman spectra were subjected to multivariate analyses—principal component analysis, principal component-based linear discriminant analysis (for stratification of study groups), and multivariate curve resolution-alternating least squares (MCR-ALS) (to comprehend biomolecular differences). Multivariate analysis revealed misclassifications between LTL and HTL at all week intervals. MCR-ALS components showed statistically significant abundances between control versus LTL and control versus HTL, but could not discern LTL and HTL. MCR-ALS components exhibited spectral mixtures of proteins, lipids, heme and nucleic acids. Thus, these findings support use of serum RS as a screening tool as varying tumour load is not a confounding factor influencing the technique.</p>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300424\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300424","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Serum Raman spectroscopy: Evaluation of tumour load variations in experimental carcinogenesis
Several serum Raman spectroscopy (RS) studies have demonstrated its potential as an oral cancer screening tool. This study investigates influence of low tumour load (LTL) and high tumour load (HTL) on serum RS using hamster buccal pouch model of experimental oral carcinogenesis. Sera of untreated control, LTL, and HTL groups at week intervals during malignant transformation were employed. Serum Raman spectra were subjected to multivariate analyses—principal component analysis, principal component-based linear discriminant analysis (for stratification of study groups), and multivariate curve resolution-alternating least squares (MCR-ALS) (to comprehend biomolecular differences). Multivariate analysis revealed misclassifications between LTL and HTL at all week intervals. MCR-ALS components showed statistically significant abundances between control versus LTL and control versus HTL, but could not discern LTL and HTL. MCR-ALS components exhibited spectral mixtures of proteins, lipids, heme and nucleic acids. Thus, these findings support use of serum RS as a screening tool as varying tumour load is not a confounding factor influencing the technique.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.