Glisant Plasa, Elizabeth Hillier, Judy Luu, Dominic Boutet, Mitchel Benovoy, Matthias G Friedrich
{"title":"氧敏感心血管磁共振图像的自动数据转换和特征提取。","authors":"Glisant Plasa, Elizabeth Hillier, Judy Luu, Dominic Boutet, Mitchel Benovoy, Matthias G Friedrich","doi":"10.1007/s12265-023-10474-7","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) is a novel, powerful tool for assessing coronary function in vivo. The data extraction and analysis however are labor-intensive. The objective of this study was to provide an automated approach for the extraction, visualization, and biomarker selection of OS-CMR images. We created a Python-based tool to automate extraction and export of raw patient data, featuring 3336 attributes per participant, into a template compatible with common data analytics frameworks, including the functionality to select predictive features for the given disease state. Each analysis was completed in about 2 min. The features selected by both ANOVA and MIC significantly outperformed (p < 0.001) the null set and complete set of features in two datasets, with mean AUROC scores of 0.89eatures f 0.94lete set of features in two datasets, with mean AUROC scores that our tool is suitable for automated data extraction and analysis of OS-CMR images.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"705-715"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Data Transformation and Feature Extraction for Oxygenation-Sensitive Cardiovascular Magnetic Resonance Images.\",\"authors\":\"Glisant Plasa, Elizabeth Hillier, Judy Luu, Dominic Boutet, Mitchel Benovoy, Matthias G Friedrich\",\"doi\":\"10.1007/s12265-023-10474-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) is a novel, powerful tool for assessing coronary function in vivo. The data extraction and analysis however are labor-intensive. The objective of this study was to provide an automated approach for the extraction, visualization, and biomarker selection of OS-CMR images. We created a Python-based tool to automate extraction and export of raw patient data, featuring 3336 attributes per participant, into a template compatible with common data analytics frameworks, including the functionality to select predictive features for the given disease state. Each analysis was completed in about 2 min. The features selected by both ANOVA and MIC significantly outperformed (p < 0.001) the null set and complete set of features in two datasets, with mean AUROC scores of 0.89eatures f 0.94lete set of features in two datasets, with mean AUROC scores that our tool is suitable for automated data extraction and analysis of OS-CMR images.</p>\",\"PeriodicalId\":15224,\"journal\":{\"name\":\"Journal of Cardiovascular Translational Research\",\"volume\":\" \",\"pages\":\"705-715\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Translational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12265-023-10474-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Translational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12265-023-10474-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Automated Data Transformation and Feature Extraction for Oxygenation-Sensitive Cardiovascular Magnetic Resonance Images.
Oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) is a novel, powerful tool for assessing coronary function in vivo. The data extraction and analysis however are labor-intensive. The objective of this study was to provide an automated approach for the extraction, visualization, and biomarker selection of OS-CMR images. We created a Python-based tool to automate extraction and export of raw patient data, featuring 3336 attributes per participant, into a template compatible with common data analytics frameworks, including the functionality to select predictive features for the given disease state. Each analysis was completed in about 2 min. The features selected by both ANOVA and MIC significantly outperformed (p < 0.001) the null set and complete set of features in two datasets, with mean AUROC scores of 0.89eatures f 0.94lete set of features in two datasets, with mean AUROC scores that our tool is suitable for automated data extraction and analysis of OS-CMR images.
期刊介绍:
Journal of Cardiovascular Translational Research (JCTR) is a premier journal in cardiovascular translational research.
JCTR is the journal of choice for authors seeking the broadest audience for emerging technologies, therapies and diagnostics, pre-clinical research, and first-in-man clinical trials.
JCTR''s intent is to provide a forum for critical evaluation of the novel cardiovascular science, to showcase important and clinically relevant aspects of the new research, as well as to discuss the impediments that may need to be overcome during the translation to patient care.