Li Hou, Siyuan Guo, Yuanyuan Wang, Shaoye Liu, Xianhui Wang
{"title":"蝗虫脂肪体脂质代谢平衡需要神经肽 ACP。","authors":"Li Hou, Siyuan Guo, Yuanyuan Wang, Shaoye Liu, Xianhui Wang","doi":"10.1111/1744-7917.13321","DOIUrl":null,"url":null,"abstract":"<p><p>Fat body metabolism plays crucial roles in each aspect of insect life traits. Although neuropeptides have been documented to be one of the major neuroendocrinal regulators involved in fat body metabolism, the detailed regulatory mechanism is poorly explored. Here, we conducted comparative metabolome and transcriptome analyses of fat body between wide type (WT) and adipokinetic hormone/corazonin-related peptide (ACP) loss of function mutants of the migratory locust, Locusta migratoria. We found that knockout of ACP resulted in significantly reduced fat body triacylglycerol content but enhanced abundance of phospholipids, particularly phosphatidylcholine and phosphatidylethanolamine. Additionally, the expression levels of genes involved in triacylglycerol and phospholipid synthesis and degradation were significantly altered in the fat body of ACP mutants. Moreover, female ACP mutants displayed much higher fecundity compared to WT females. These findings highlight the important role of neuropeptide ACP in fat body lipid metabolism homeostasis in locusts.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1453-1465"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuropeptide ACP is required for fat body lipid metabolism homeostasis in locusts.\",\"authors\":\"Li Hou, Siyuan Guo, Yuanyuan Wang, Shaoye Liu, Xianhui Wang\",\"doi\":\"10.1111/1744-7917.13321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fat body metabolism plays crucial roles in each aspect of insect life traits. Although neuropeptides have been documented to be one of the major neuroendocrinal regulators involved in fat body metabolism, the detailed regulatory mechanism is poorly explored. Here, we conducted comparative metabolome and transcriptome analyses of fat body between wide type (WT) and adipokinetic hormone/corazonin-related peptide (ACP) loss of function mutants of the migratory locust, Locusta migratoria. We found that knockout of ACP resulted in significantly reduced fat body triacylglycerol content but enhanced abundance of phospholipids, particularly phosphatidylcholine and phosphatidylethanolamine. Additionally, the expression levels of genes involved in triacylglycerol and phospholipid synthesis and degradation were significantly altered in the fat body of ACP mutants. Moreover, female ACP mutants displayed much higher fecundity compared to WT females. These findings highlight the important role of neuropeptide ACP in fat body lipid metabolism homeostasis in locusts.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":\" \",\"pages\":\"1453-1465\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13321\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13321","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Neuropeptide ACP is required for fat body lipid metabolism homeostasis in locusts.
Fat body metabolism plays crucial roles in each aspect of insect life traits. Although neuropeptides have been documented to be one of the major neuroendocrinal regulators involved in fat body metabolism, the detailed regulatory mechanism is poorly explored. Here, we conducted comparative metabolome and transcriptome analyses of fat body between wide type (WT) and adipokinetic hormone/corazonin-related peptide (ACP) loss of function mutants of the migratory locust, Locusta migratoria. We found that knockout of ACP resulted in significantly reduced fat body triacylglycerol content but enhanced abundance of phospholipids, particularly phosphatidylcholine and phosphatidylethanolamine. Additionally, the expression levels of genes involved in triacylglycerol and phospholipid synthesis and degradation were significantly altered in the fat body of ACP mutants. Moreover, female ACP mutants displayed much higher fecundity compared to WT females. These findings highlight the important role of neuropeptide ACP in fat body lipid metabolism homeostasis in locusts.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.