Nazario Tartaglione, Fabien Desbiolles, Anna del Moral-Méndez, Agostino N. Meroni, Anna Napoli, Matteo Borgnino, Antonio Parodi, Claudia Pasquero
{"title":"低云对气溶胶-辐射-云相互作用的响应:EUREC4A 项目的理想化 WRF 数值实验","authors":"Nazario Tartaglione, Fabien Desbiolles, Anna del Moral-Méndez, Agostino N. Meroni, Anna Napoli, Matteo Borgnino, Antonio Parodi, Claudia Pasquero","doi":"10.1002/asl.1208","DOIUrl":null,"url":null,"abstract":"<p>Aerosols significantly affect cloud microphysics and energy budget in different ways. The contribution of the direct, semi-direct, and indirect effects of aerosols on radiation are here investigated over the North Atlantic tropical ocean under different aerosol loadings. The Weather Research and Forecasting Model is used to perform a set of numerical idealized experiments, which are forced with prescribed aerosol profiles. We evaluate the effects of aerosols on modeled shallow clouds and surface radiative budget. The results indicate that large aerosol loadings are associated with enhanced cloudiness and reduced precipitation. While the change in rainfall is mainly due to the larger number of smaller droplets, the change in cloudiness is attributed to the effects of absorbing aerosols, mainly dust particles, which are responsible for a rise of temperature that feeds back onto specific humidity. As in the boundary layer the increase of moisture dominates, the net effect is a higher relative humidity, which favors the formation of thin low non-precipitating clouds. The feedback accounts for a dynamical change in the lower troposphere: shortwave radiation absorption increases temperature at the top of the marine atmospheric boundary-layer and reduces entrainment of warm and dry air, increasing low level moisture content. Despite the overall increase in cloudiness, daytime cloud cover is reduced. The semi-direct effect of aerosols on clouds results in a warming of the surface, opposite to the indirect effect.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1208","citationCount":"0","resultStr":"{\"title\":\"Low cloud response to aerosol-radiation-cloud interactions: Idealized WRF numerical experiments for EUREC4A project\",\"authors\":\"Nazario Tartaglione, Fabien Desbiolles, Anna del Moral-Méndez, Agostino N. Meroni, Anna Napoli, Matteo Borgnino, Antonio Parodi, Claudia Pasquero\",\"doi\":\"10.1002/asl.1208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aerosols significantly affect cloud microphysics and energy budget in different ways. The contribution of the direct, semi-direct, and indirect effects of aerosols on radiation are here investigated over the North Atlantic tropical ocean under different aerosol loadings. The Weather Research and Forecasting Model is used to perform a set of numerical idealized experiments, which are forced with prescribed aerosol profiles. We evaluate the effects of aerosols on modeled shallow clouds and surface radiative budget. The results indicate that large aerosol loadings are associated with enhanced cloudiness and reduced precipitation. While the change in rainfall is mainly due to the larger number of smaller droplets, the change in cloudiness is attributed to the effects of absorbing aerosols, mainly dust particles, which are responsible for a rise of temperature that feeds back onto specific humidity. As in the boundary layer the increase of moisture dominates, the net effect is a higher relative humidity, which favors the formation of thin low non-precipitating clouds. The feedback accounts for a dynamical change in the lower troposphere: shortwave radiation absorption increases temperature at the top of the marine atmospheric boundary-layer and reduces entrainment of warm and dry air, increasing low level moisture content. Despite the overall increase in cloudiness, daytime cloud cover is reduced. The semi-direct effect of aerosols on clouds results in a warming of the surface, opposite to the indirect effect.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1208\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1208\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1208","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Low cloud response to aerosol-radiation-cloud interactions: Idealized WRF numerical experiments for EUREC4A project
Aerosols significantly affect cloud microphysics and energy budget in different ways. The contribution of the direct, semi-direct, and indirect effects of aerosols on radiation are here investigated over the North Atlantic tropical ocean under different aerosol loadings. The Weather Research and Forecasting Model is used to perform a set of numerical idealized experiments, which are forced with prescribed aerosol profiles. We evaluate the effects of aerosols on modeled shallow clouds and surface radiative budget. The results indicate that large aerosol loadings are associated with enhanced cloudiness and reduced precipitation. While the change in rainfall is mainly due to the larger number of smaller droplets, the change in cloudiness is attributed to the effects of absorbing aerosols, mainly dust particles, which are responsible for a rise of temperature that feeds back onto specific humidity. As in the boundary layer the increase of moisture dominates, the net effect is a higher relative humidity, which favors the formation of thin low non-precipitating clouds. The feedback accounts for a dynamical change in the lower troposphere: shortwave radiation absorption increases temperature at the top of the marine atmospheric boundary-layer and reduces entrainment of warm and dry air, increasing low level moisture content. Despite the overall increase in cloudiness, daytime cloud cover is reduced. The semi-direct effect of aerosols on clouds results in a warming of the surface, opposite to the indirect effect.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.