{"title":"GRAMO:用于单目三维物体检测的几何重采样增强技术","authors":"He Guan, Chunfeng Song, Zhaoxiang Zhang","doi":"10.1007/s11704-023-3242-2","DOIUrl":null,"url":null,"abstract":"<p>Data augmentation is widely recognized as an effective means of bolstering model robustness. However, when applied to monocular 3D object detection, non-geometric image augmentation neglects the critical link between the image and physical space, resulting in the semantic collapse of the extended scene. To address this issue, we propose two geometric-level data augmentation operators named Geometric-Copy-Paste (Geo-CP) and Geometric-Crop-Shrink (Geo-CS). Both operators introduce geometric consistency based on the principle of perspective projection, complementing the options available for data augmentation in monocular 3D. Specifically, Geo-CP replicates local patches by reordering object depths to mitigate perspective occlusion conflicts, and Geo-CS re-crops local patches for simultaneous scaling of distance and scale to unify appearance and annotation. These operations ameliorate the problem of class imbalance in the monocular paradigm by increasing the quantity and distribution of geometrically consistent samples. Experiments demonstrate that our geometric-level augmentation operators effectively improve robustness and performance in the KITTI and Waymo monocular 3D detection benchmarks.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"45 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GRAMO: geometric resampling augmentation for monocular 3D object detection\",\"authors\":\"He Guan, Chunfeng Song, Zhaoxiang Zhang\",\"doi\":\"10.1007/s11704-023-3242-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Data augmentation is widely recognized as an effective means of bolstering model robustness. However, when applied to monocular 3D object detection, non-geometric image augmentation neglects the critical link between the image and physical space, resulting in the semantic collapse of the extended scene. To address this issue, we propose two geometric-level data augmentation operators named Geometric-Copy-Paste (Geo-CP) and Geometric-Crop-Shrink (Geo-CS). Both operators introduce geometric consistency based on the principle of perspective projection, complementing the options available for data augmentation in monocular 3D. Specifically, Geo-CP replicates local patches by reordering object depths to mitigate perspective occlusion conflicts, and Geo-CS re-crops local patches for simultaneous scaling of distance and scale to unify appearance and annotation. These operations ameliorate the problem of class imbalance in the monocular paradigm by increasing the quantity and distribution of geometrically consistent samples. Experiments demonstrate that our geometric-level augmentation operators effectively improve robustness and performance in the KITTI and Waymo monocular 3D detection benchmarks.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-023-3242-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-3242-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
GRAMO: geometric resampling augmentation for monocular 3D object detection
Data augmentation is widely recognized as an effective means of bolstering model robustness. However, when applied to monocular 3D object detection, non-geometric image augmentation neglects the critical link between the image and physical space, resulting in the semantic collapse of the extended scene. To address this issue, we propose two geometric-level data augmentation operators named Geometric-Copy-Paste (Geo-CP) and Geometric-Crop-Shrink (Geo-CS). Both operators introduce geometric consistency based on the principle of perspective projection, complementing the options available for data augmentation in monocular 3D. Specifically, Geo-CP replicates local patches by reordering object depths to mitigate perspective occlusion conflicts, and Geo-CS re-crops local patches for simultaneous scaling of distance and scale to unify appearance and annotation. These operations ameliorate the problem of class imbalance in the monocular paradigm by increasing the quantity and distribution of geometrically consistent samples. Experiments demonstrate that our geometric-level augmentation operators effectively improve robustness and performance in the KITTI and Waymo monocular 3D detection benchmarks.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.