{"title":"群中的多项式映射和多项式序列","authors":"Ya-Qing Hu","doi":"10.1515/jgth-2023-0051","DOIUrl":null,"url":null,"abstract":"This paper presents a modified version of Leibman’s group-theoretic generalizations of the difference calculus for polynomial maps from nonempty commutative semigroups to groups, and proves that it has many desirable formal properties when the target group is locally nilpotent and also when the semigroup is the set of nonnegative integers. We will apply it to solve Waring’s problem for general discrete Heisenberg groups in a sequel to this paper.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial maps and polynomial sequences in groups\",\"authors\":\"Ya-Qing Hu\",\"doi\":\"10.1515/jgth-2023-0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a modified version of Leibman’s group-theoretic generalizations of the difference calculus for polynomial maps from nonempty commutative semigroups to groups, and proves that it has many desirable formal properties when the target group is locally nilpotent and also when the semigroup is the set of nonnegative integers. We will apply it to solve Waring’s problem for general discrete Heisenberg groups in a sequel to this paper.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polynomial maps and polynomial sequences in groups
This paper presents a modified version of Leibman’s group-theoretic generalizations of the difference calculus for polynomial maps from nonempty commutative semigroups to groups, and proves that it has many desirable formal properties when the target group is locally nilpotent and also when the semigroup is the set of nonnegative integers. We will apply it to solve Waring’s problem for general discrete Heisenberg groups in a sequel to this paper.