通过 s-Convexity 和分数积分的 Hermite-Hadamard 型不等式的新发展

IF 1.3 4区 数学 Q1 MATHEMATICS
Khuram Ali Khan, Saeeda Fatima, Ammara Nosheen, Rostin Matendo Mabela
{"title":"通过 s-Convexity 和分数积分的 Hermite-Hadamard 型不等式的新发展","authors":"Khuram Ali Khan, Saeeda Fatima, Ammara Nosheen, Rostin Matendo Mabela","doi":"10.1155/2024/1997549","DOIUrl":null,"url":null,"abstract":"In this paper, we present an identity for differentiable functions that has played an important role in proving Hermite–Hadamard type inequalities for functions whose absolute values of first derivatives are <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 4.9929 6.1673\" width=\"4.9929pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>-</span>convex functions. Meanwhile, some Hermite–Hadamard type inequalities for the functions whose absolute values of second derivatives are <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 4.9929 6.1673\" width=\"4.9929pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-116\"></use></g></svg>-</span>convex are also established with the help of an existing identity in literature. Many limiting results are deduced from the main results which are stated in remarks. Some applications of proved results are also discussed in the present study.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Developments of Hermite–Hadamard Type Inequalities via s-Convexity and Fractional Integrals\",\"authors\":\"Khuram Ali Khan, Saeeda Fatima, Ammara Nosheen, Rostin Matendo Mabela\",\"doi\":\"10.1155/2024/1997549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an identity for differentiable functions that has played an important role in proving Hermite–Hadamard type inequalities for functions whose absolute values of first derivatives are <span><svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 4.9929 6.1673\\\" width=\\\"4.9929pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>-</span>convex functions. Meanwhile, some Hermite–Hadamard type inequalities for the functions whose absolute values of second derivatives are <span><svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 4.9929 6.1673\\\" width=\\\"4.9929pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-116\\\"></use></g></svg>-</span>convex are also established with the help of an existing identity in literature. Many limiting results are deduced from the main results which are stated in remarks. Some applications of proved results are also discussed in the present study.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1997549\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/1997549","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了可微函数的一个特性,它在证明一阶导数绝对值为-凸函数的赫米特-哈达玛不等式中发挥了重要作用。同时,我们还借助文献中已有的标识,建立了一些二阶导数绝对值为-凸函数的赫米特-哈达玛不等式。从主要结果中推导出许多极限结果,并在备注中加以说明。本研究还讨论了已证明结果的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Developments of Hermite–Hadamard Type Inequalities via s-Convexity and Fractional Integrals
In this paper, we present an identity for differentiable functions that has played an important role in proving Hermite–Hadamard type inequalities for functions whose absolute values of first derivatives are -convex functions. Meanwhile, some Hermite–Hadamard type inequalities for the functions whose absolute values of second derivatives are -convex are also established with the help of an existing identity in literature. Many limiting results are deduced from the main results which are stated in remarks. Some applications of proved results are also discussed in the present study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信