{"title":"猫胸脊髓延髓呼气神经元的轴突投射","authors":"Kenta Kawamura , Kazumasa Sasaki , Sei-Ichi Sasaki , Kazuhide Tomita","doi":"10.1016/j.resp.2024.104218","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Expiratory neurons in the caudal ventral respiratory group extend descending axons to the lumbar and sacral spinal cord, and they possess axon collaterals, the distribution of which has been well-documented. Likewise, these expiratory neurons extend axons to the </span>thoracic spinal cord and innervate thoracic expiratory </span>motoneurons<span><span>. These axons also give rise to collaterals, and their distribution may influence the strength of synaptic connectivity between the axons and the thoracic expiratory motoneurons. We investigated the distribution of axon collaterals in the thoracic spinal cord using a microstimulation<span> technique. This study was performed on cats; one cat was used to make an anatomical atlas and six were used in the experiment. Extracellular spikes of expiratory neurons were recorded in artificially ventilated cats. The thoracic spinal gray matter was microstimulated from dorsal to ventral sites at 100-μm intervals using a glass-insulated tungsten microelectrode<span> with a current of 150–250 μA. The stimulation tracks were made at 1 mm intervals along the spinal cord in segments Th9 to Th13, and the effective stimulating sites of antidromic activation in axon collaterals were systematically mapped. The effective stimulating sites in the </span></span></span>contralateral<span> thoracic spinal cord with expiratory neurons in the caudal ventral respiratory group (cVRG) occupied 14.4% of the total length of the thoracic spinal cord examined. The mean percentage of effective stimulating tracks per unit was 18.6 ± 4.4%. The distribution of axon collaterals of expiratory neurons in the feline thoracic spinal cord indeed resembled that reported in the upper lumbar spinal cord. We propose that a single medullary expiratory neuron exerts excitatory effects across multiple segments of the thoracic spinal cord via its collaterals.</span></span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axonal projection of the medullary expiratory neurons in the feline thoracic spinal cord\",\"authors\":\"Kenta Kawamura , Kazumasa Sasaki , Sei-Ichi Sasaki , Kazuhide Tomita\",\"doi\":\"10.1016/j.resp.2024.104218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Expiratory neurons in the caudal ventral respiratory group extend descending axons to the lumbar and sacral spinal cord, and they possess axon collaterals, the distribution of which has been well-documented. Likewise, these expiratory neurons extend axons to the </span>thoracic spinal cord and innervate thoracic expiratory </span>motoneurons<span><span>. These axons also give rise to collaterals, and their distribution may influence the strength of synaptic connectivity between the axons and the thoracic expiratory motoneurons. We investigated the distribution of axon collaterals in the thoracic spinal cord using a microstimulation<span> technique. This study was performed on cats; one cat was used to make an anatomical atlas and six were used in the experiment. Extracellular spikes of expiratory neurons were recorded in artificially ventilated cats. The thoracic spinal gray matter was microstimulated from dorsal to ventral sites at 100-μm intervals using a glass-insulated tungsten microelectrode<span> with a current of 150–250 μA. The stimulation tracks were made at 1 mm intervals along the spinal cord in segments Th9 to Th13, and the effective stimulating sites of antidromic activation in axon collaterals were systematically mapped. The effective stimulating sites in the </span></span></span>contralateral<span> thoracic spinal cord with expiratory neurons in the caudal ventral respiratory group (cVRG) occupied 14.4% of the total length of the thoracic spinal cord examined. The mean percentage of effective stimulating tracks per unit was 18.6 ± 4.4%. The distribution of axon collaterals of expiratory neurons in the feline thoracic spinal cord indeed resembled that reported in the upper lumbar spinal cord. We propose that a single medullary expiratory neuron exerts excitatory effects across multiple segments of the thoracic spinal cord via its collaterals.</span></span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569904824000119\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904824000119","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Axonal projection of the medullary expiratory neurons in the feline thoracic spinal cord
Expiratory neurons in the caudal ventral respiratory group extend descending axons to the lumbar and sacral spinal cord, and they possess axon collaterals, the distribution of which has been well-documented. Likewise, these expiratory neurons extend axons to the thoracic spinal cord and innervate thoracic expiratory motoneurons. These axons also give rise to collaterals, and their distribution may influence the strength of synaptic connectivity between the axons and the thoracic expiratory motoneurons. We investigated the distribution of axon collaterals in the thoracic spinal cord using a microstimulation technique. This study was performed on cats; one cat was used to make an anatomical atlas and six were used in the experiment. Extracellular spikes of expiratory neurons were recorded in artificially ventilated cats. The thoracic spinal gray matter was microstimulated from dorsal to ventral sites at 100-μm intervals using a glass-insulated tungsten microelectrode with a current of 150–250 μA. The stimulation tracks were made at 1 mm intervals along the spinal cord in segments Th9 to Th13, and the effective stimulating sites of antidromic activation in axon collaterals were systematically mapped. The effective stimulating sites in the contralateral thoracic spinal cord with expiratory neurons in the caudal ventral respiratory group (cVRG) occupied 14.4% of the total length of the thoracic spinal cord examined. The mean percentage of effective stimulating tracks per unit was 18.6 ± 4.4%. The distribution of axon collaterals of expiratory neurons in the feline thoracic spinal cord indeed resembled that reported in the upper lumbar spinal cord. We propose that a single medullary expiratory neuron exerts excitatory effects across multiple segments of the thoracic spinal cord via its collaterals.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.