Vinay K Pattalachinti, Ichiaki Ito, Saikat Chowdhury, Abdelrahman Yousef, Yue Gu, Betul Beyza Gunes, Emma R Salle, Melissa W Taggart, Keith Fournier, Natalie W Fowlkes, John Paul Shen
{"title":"腹膜微环境促进阑尾腺癌生长:利用患者衍生异种移植的多组学方法。","authors":"Vinay K Pattalachinti, Ichiaki Ito, Saikat Chowdhury, Abdelrahman Yousef, Yue Gu, Betul Beyza Gunes, Emma R Salle, Melissa W Taggart, Keith Fournier, Natalie W Fowlkes, John Paul Shen","doi":"10.1158/1541-7786.MCR-23-0749","DOIUrl":null,"url":null,"abstract":"<p><p>Appendiceal adenocarcinoma (AA) is unique from other gastrointestinal malignancies in that it almost exclusively metastasizes to the peritoneal cavity. However, few studies have investigated the molecular interaction of the peritoneal microenvironment and AA. Here, we use a multi-omics approach with orthotopic and flank-implanted patient-derived xenografts (PDX) to study the effect of the peritoneal microenvironment on AA. AA tumors implanted in the peritoneal microenvironment tended to grow faster and displayed greater nuclear expression of Ki-67 relative to the same tumors implanted in the flank. Comparing the tumor-specific transcriptome (excluding stromal transcription), the peritoneal microenvironment relatively upregulated genes related to proliferation, including MKI67 and EXO1. Peritoneal tumors were also enriched for proliferative gene sets, including E2F and Myc Targets. Proteomic studies found a 2.5-fold increased ratio of active-to-inactive phosphoforms of the YAP oncoprotein in peritoneal tumors, indicating downregulation of Hippo signaling.</p><p><strong>Implications: </strong>The peritoneal microenvironment promotes growth of appendiceal tumors and expression of proliferative pathways in PDXs.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"329-336"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987270/pdf/","citationCount":"0","resultStr":"{\"title\":\"Peritoneal Microenvironment Promotes Appendiceal Adenocarcinoma Growth: A Multi-omics Approach Using Patient-Derived Xenografts.\",\"authors\":\"Vinay K Pattalachinti, Ichiaki Ito, Saikat Chowdhury, Abdelrahman Yousef, Yue Gu, Betul Beyza Gunes, Emma R Salle, Melissa W Taggart, Keith Fournier, Natalie W Fowlkes, John Paul Shen\",\"doi\":\"10.1158/1541-7786.MCR-23-0749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Appendiceal adenocarcinoma (AA) is unique from other gastrointestinal malignancies in that it almost exclusively metastasizes to the peritoneal cavity. However, few studies have investigated the molecular interaction of the peritoneal microenvironment and AA. Here, we use a multi-omics approach with orthotopic and flank-implanted patient-derived xenografts (PDX) to study the effect of the peritoneal microenvironment on AA. AA tumors implanted in the peritoneal microenvironment tended to grow faster and displayed greater nuclear expression of Ki-67 relative to the same tumors implanted in the flank. Comparing the tumor-specific transcriptome (excluding stromal transcription), the peritoneal microenvironment relatively upregulated genes related to proliferation, including MKI67 and EXO1. Peritoneal tumors were also enriched for proliferative gene sets, including E2F and Myc Targets. Proteomic studies found a 2.5-fold increased ratio of active-to-inactive phosphoforms of the YAP oncoprotein in peritoneal tumors, indicating downregulation of Hippo signaling.</p><p><strong>Implications: </strong>The peritoneal microenvironment promotes growth of appendiceal tumors and expression of proliferative pathways in PDXs.</p>\",\"PeriodicalId\":19095,\"journal\":{\"name\":\"Molecular Cancer Research\",\"volume\":\" \",\"pages\":\"329-336\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987270/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1541-7786.MCR-23-0749\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-23-0749","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
阑尾腺癌(AA)与其他胃肠道恶性肿瘤不同,它几乎完全转移到腹腔。然而,很少有研究调查腹膜微环境与 AA 的分子相互作用。在这里,我们采用多组学方法,通过正位和侧位植入患者衍生异种移植物(PDXs)来研究腹膜微环境对AA的影响。与植入侧腹的相同肿瘤相比,植入腹膜微环境的AA肿瘤生长速度更快,KI-67的核表达量更高。比较肿瘤特异性转录组(不包括基质转录),腹膜微环境中与增殖相关的基因相对上调,包括MKI67和EXO1。腹膜肿瘤还富集了增殖基因组,包括E2F和Myc Targets。蛋白质组学研究发现,腹膜肿瘤中活性与非活性 YAP 的比率增加了 2.5 倍,这表明 Hippo 信号转导被下调。影响:腹膜微环境促进了阑尾肿瘤的生长以及PDXs中增殖通路的表达。
Peritoneal Microenvironment Promotes Appendiceal Adenocarcinoma Growth: A Multi-omics Approach Using Patient-Derived Xenografts.
Appendiceal adenocarcinoma (AA) is unique from other gastrointestinal malignancies in that it almost exclusively metastasizes to the peritoneal cavity. However, few studies have investigated the molecular interaction of the peritoneal microenvironment and AA. Here, we use a multi-omics approach with orthotopic and flank-implanted patient-derived xenografts (PDX) to study the effect of the peritoneal microenvironment on AA. AA tumors implanted in the peritoneal microenvironment tended to grow faster and displayed greater nuclear expression of Ki-67 relative to the same tumors implanted in the flank. Comparing the tumor-specific transcriptome (excluding stromal transcription), the peritoneal microenvironment relatively upregulated genes related to proliferation, including MKI67 and EXO1. Peritoneal tumors were also enriched for proliferative gene sets, including E2F and Myc Targets. Proteomic studies found a 2.5-fold increased ratio of active-to-inactive phosphoforms of the YAP oncoprotein in peritoneal tumors, indicating downregulation of Hippo signaling.
Implications: The peritoneal microenvironment promotes growth of appendiceal tumors and expression of proliferative pathways in PDXs.
期刊介绍:
Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.