{"title":"通过全基因组 CRISPR 筛选了解表皮复合菌与宿主的相互作用。","authors":"Eva Hesping, Justin A Boddey","doi":"10.1111/mmi.15221","DOIUrl":null,"url":null,"abstract":"<p><p>Apicomplexan parasites are aetiological agents of numerous diseases in humans and livestock. Functional genomics studies in these parasites enable the identification of biological mechanisms and protein functions that can be targeted for therapeutic intervention. Recent improvements in forward genetics and whole-genome screens utilising CRISPR/Cas technology have revolutionised the functional analysis of genes during Apicomplexan infection of host cells. Here, we highlight key discoveries from CRISPR/Cas9 screens in Apicomplexa or their infected host cells and discuss remaining challenges to maximise this technology that may help answer fundamental questions about parasite-host interactions.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"717-726"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole-genome CRISPR screens to understand Apicomplexan-host interactions.\",\"authors\":\"Eva Hesping, Justin A Boddey\",\"doi\":\"10.1111/mmi.15221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Apicomplexan parasites are aetiological agents of numerous diseases in humans and livestock. Functional genomics studies in these parasites enable the identification of biological mechanisms and protein functions that can be targeted for therapeutic intervention. Recent improvements in forward genetics and whole-genome screens utilising CRISPR/Cas technology have revolutionised the functional analysis of genes during Apicomplexan infection of host cells. Here, we highlight key discoveries from CRISPR/Cas9 screens in Apicomplexa or their infected host cells and discuss remaining challenges to maximise this technology that may help answer fundamental questions about parasite-host interactions.</p>\",\"PeriodicalId\":19006,\"journal\":{\"name\":\"Molecular Microbiology\",\"volume\":\" \",\"pages\":\"717-726\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mmi.15221\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15221","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Whole-genome CRISPR screens to understand Apicomplexan-host interactions.
Apicomplexan parasites are aetiological agents of numerous diseases in humans and livestock. Functional genomics studies in these parasites enable the identification of biological mechanisms and protein functions that can be targeted for therapeutic intervention. Recent improvements in forward genetics and whole-genome screens utilising CRISPR/Cas technology have revolutionised the functional analysis of genes during Apicomplexan infection of host cells. Here, we highlight key discoveries from CRISPR/Cas9 screens in Apicomplexa or their infected host cells and discuss remaining challenges to maximise this technology that may help answer fundamental questions about parasite-host interactions.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.