Laura Marcela Martinez-Chavez, Joe M Roberts, Alison J Karley, Bethan Shaw, Tom W Pope
{"title":"夹笼难题:在适应性研究中评估封闭方法和蚜虫基因型的相互作用。","authors":"Laura Marcela Martinez-Chavez, Joe M Roberts, Alison J Karley, Bethan Shaw, Tom W Pope","doi":"10.1111/1744-7917.13316","DOIUrl":null,"url":null,"abstract":"<p><p>Behavior and fitness are important ecological traits frequently measured in insect bioassays. A common method to measure them in soft-bodied herbivorous insects involves confining individuals to plant leaves using clip cages. Although studies have previously highlighted the negative effects of clip cages on leaf physiology, little is known about the impact that using this confinement method has on insect fitness. The responses of different aphid genotypes/clones to different containment methods have not previously been investigated. Here we measured key fitness traits (intrinsic rate of natural increase, mean relative growth rate, time to reach reproductive adulthood and population doubling time) in the potato aphid, Macrosiphum euphorbiae Thomas (Hemiptera: Aphididae), when confined to plants using two methods: (1) clip cages to confine aphids to individual strawberry leaves and (2) a mesh bag to confine aphids to whole strawberry plants. Our study identified a strong negative impact on all the measured aphid fitness traits when using clip cages instead of mesh bags. We also identified genotype-specific differences in response to confinement method, where clip cage confinement differentially affected the fitness of a given aphid genotype compared to the same genotype on whole plants. These results suggest that clip cage use should be carefully considered when experiments seek to quantify insect fitness and that whole plants should be used wherever possible. Given the prevalence of clip cage use in insect bioassays, our results highlight the need for caution when interpreting the existing literature as confinement method significantly impacts aphid fitness depending on their genotype.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1591-1602"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The clip cage conundrum: Assessing the interplay of confinement method and aphid genotype in fitness studies.\",\"authors\":\"Laura Marcela Martinez-Chavez, Joe M Roberts, Alison J Karley, Bethan Shaw, Tom W Pope\",\"doi\":\"10.1111/1744-7917.13316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Behavior and fitness are important ecological traits frequently measured in insect bioassays. A common method to measure them in soft-bodied herbivorous insects involves confining individuals to plant leaves using clip cages. Although studies have previously highlighted the negative effects of clip cages on leaf physiology, little is known about the impact that using this confinement method has on insect fitness. The responses of different aphid genotypes/clones to different containment methods have not previously been investigated. Here we measured key fitness traits (intrinsic rate of natural increase, mean relative growth rate, time to reach reproductive adulthood and population doubling time) in the potato aphid, Macrosiphum euphorbiae Thomas (Hemiptera: Aphididae), when confined to plants using two methods: (1) clip cages to confine aphids to individual strawberry leaves and (2) a mesh bag to confine aphids to whole strawberry plants. Our study identified a strong negative impact on all the measured aphid fitness traits when using clip cages instead of mesh bags. We also identified genotype-specific differences in response to confinement method, where clip cage confinement differentially affected the fitness of a given aphid genotype compared to the same genotype on whole plants. These results suggest that clip cage use should be carefully considered when experiments seek to quantify insect fitness and that whole plants should be used wherever possible. Given the prevalence of clip cage use in insect bioassays, our results highlight the need for caution when interpreting the existing literature as confinement method significantly impacts aphid fitness depending on their genotype.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":\" \",\"pages\":\"1591-1602\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13316\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13316","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
The clip cage conundrum: Assessing the interplay of confinement method and aphid genotype in fitness studies.
Behavior and fitness are important ecological traits frequently measured in insect bioassays. A common method to measure them in soft-bodied herbivorous insects involves confining individuals to plant leaves using clip cages. Although studies have previously highlighted the negative effects of clip cages on leaf physiology, little is known about the impact that using this confinement method has on insect fitness. The responses of different aphid genotypes/clones to different containment methods have not previously been investigated. Here we measured key fitness traits (intrinsic rate of natural increase, mean relative growth rate, time to reach reproductive adulthood and population doubling time) in the potato aphid, Macrosiphum euphorbiae Thomas (Hemiptera: Aphididae), when confined to plants using two methods: (1) clip cages to confine aphids to individual strawberry leaves and (2) a mesh bag to confine aphids to whole strawberry plants. Our study identified a strong negative impact on all the measured aphid fitness traits when using clip cages instead of mesh bags. We also identified genotype-specific differences in response to confinement method, where clip cage confinement differentially affected the fitness of a given aphid genotype compared to the same genotype on whole plants. These results suggest that clip cage use should be carefully considered when experiments seek to quantify insect fitness and that whole plants should be used wherever possible. Given the prevalence of clip cage use in insect bioassays, our results highlight the need for caution when interpreting the existing literature as confinement method significantly impacts aphid fitness depending on their genotype.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.