下一代转录组数据解卷积研究肿瘤微环境。

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Lorenzo Merotto, Maria Zopoglou, Constantin Zackl, Francesca Finotello
{"title":"下一代转录组数据解卷积研究肿瘤微环境。","authors":"Lorenzo Merotto, Maria Zopoglou, Constantin Zackl, Francesca Finotello","doi":"10.1016/bs.ircmb.2023.05.002","DOIUrl":null,"url":null,"abstract":"<p><p>Methods for in silico deconvolution of bulk transcriptomics can characterize the cellular composition of the tumor microenvironment, quantifying the abundance of cell types associated with patients' prognosis and response to therapy. While first-generation deconvolution methods rely on precomputed, transcriptional signatures of a handful of cell types, second-generation methods can be trained with single-cell data to disentangle more fine-grained cell phenotypes and states. These novel approaches can also be applied to spatial transcriptomic data to reveal the spatial organization of tumors. In this review, we describe state-of-the-art deconvolution methods (first-generation, second-generation, and spatial) which can be used to investigate the tumor microenvironment, discussing their strengths and limitations. We conclude with an outlook on the challenges that need to be overcome to unlock the full potential of next-generation deconvolution for oncology and the life sciences.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":"382 ","pages":"103-143"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next-generation deconvolution of transcriptomic data to investigate the tumor microenvironment.\",\"authors\":\"Lorenzo Merotto, Maria Zopoglou, Constantin Zackl, Francesca Finotello\",\"doi\":\"10.1016/bs.ircmb.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methods for in silico deconvolution of bulk transcriptomics can characterize the cellular composition of the tumor microenvironment, quantifying the abundance of cell types associated with patients' prognosis and response to therapy. While first-generation deconvolution methods rely on precomputed, transcriptional signatures of a handful of cell types, second-generation methods can be trained with single-cell data to disentangle more fine-grained cell phenotypes and states. These novel approaches can also be applied to spatial transcriptomic data to reveal the spatial organization of tumors. In this review, we describe state-of-the-art deconvolution methods (first-generation, second-generation, and spatial) which can be used to investigate the tumor microenvironment, discussing their strengths and limitations. We conclude with an outlook on the challenges that need to be overcome to unlock the full potential of next-generation deconvolution for oncology and the life sciences.</p>\",\"PeriodicalId\":14422,\"journal\":{\"name\":\"International review of cell and molecular biology\",\"volume\":\"382 \",\"pages\":\"103-143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International review of cell and molecular biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ircmb.2023.05.002\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of cell and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ircmb.2023.05.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

大量转录组学的硅解卷积方法可以描述肿瘤微环境的细胞组成,量化与患者预后和治疗反应相关的细胞类型的丰度。第一代解卷积方法依赖于预先计算出的少数细胞类型的转录特征,而第二代方法则可以通过单细胞数据进行训练,以区分更精细的细胞表型和状态。这些新方法还可应用于空间转录组数据,以揭示肿瘤的空间组织。在这篇综述中,我们介绍了可用于研究肿瘤微环境的最先进的解卷积方法(第一代、第二代和空间),并讨论了它们的优势和局限性。最后,我们展望了肿瘤学和生命科学领域需要克服的挑战,以充分释放下一代解卷积技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next-generation deconvolution of transcriptomic data to investigate the tumor microenvironment.

Methods for in silico deconvolution of bulk transcriptomics can characterize the cellular composition of the tumor microenvironment, quantifying the abundance of cell types associated with patients' prognosis and response to therapy. While first-generation deconvolution methods rely on precomputed, transcriptional signatures of a handful of cell types, second-generation methods can be trained with single-cell data to disentangle more fine-grained cell phenotypes and states. These novel approaches can also be applied to spatial transcriptomic data to reveal the spatial organization of tumors. In this review, we describe state-of-the-art deconvolution methods (first-generation, second-generation, and spatial) which can be used to investigate the tumor microenvironment, discussing their strengths and limitations. We conclude with an outlook on the challenges that need to be overcome to unlock the full potential of next-generation deconvolution for oncology and the life sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International review of cell and molecular biology
International review of cell and molecular biology BIOCHEMISTRY & MOLECULAR BIOLOGY-CELL BIOLOGY
CiteScore
7.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology-both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信