{"title":"配量对通过溶液结晶配制的槲皮素-精氨酸共晶体特性的影响。","authors":"Mahima Mishra, Shivanshu Agrawal, Pratap Bahadur, Sanjay Tiwari","doi":"10.1080/03639045.2024.2306281","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study is to demonstrate the effect of stoichiometry upon characteristics of quercetin-arginine (QCT-Arg) cocrystals.</p><p><strong>Significance: </strong>Quercetin (QCT) is a most abundant flavonoid in vegetables and fruits and has been widely used as an antioxidant. However, its oral bioavailability remains low due to poor aqueous solubility. We illustrate that QCT-Arg cocrystals formulated through an optimized stoichiometry can be a useful approach for its solubilization.</p><p><strong>Method: </strong>Cocrystals were prepared using solvent evaporation method. Characterizations were performed through microscopic, spectroscopic, and thermal techniques. The stoichiometry was confirmed from the binary phase diagram which was prepared using thermograms derived from differential scanning calorimetric experiments.</p><p><strong>Result: </strong>Cocrystal formation was accompanied by the conversion of isotropic phase into anisotropic one. Thread-like cocrystals were formed, regardless of QCT-Arg stoichiometry and solvent's polarity. Spectral analyses suggested that cocrystal structure was held together by hydrogen bonding between QCT and Arg. We ruled out the existence of eutectic mixture based on the observation of two eutectic points in the binary phase diagram.</p><p><strong>Conclusion: </strong>Morphology of cocrystals remained unaffected by the solvent type, stoichiometry and the presence of surfactant. We noticed that the cocrystals could improve the aqueous solubility of QCT.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"163-172"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of stoichiometry upon the characteristics of quercetin-arginine cocrystals formulated through solution crystallization.\",\"authors\":\"Mahima Mishra, Shivanshu Agrawal, Pratap Bahadur, Sanjay Tiwari\",\"doi\":\"10.1080/03639045.2024.2306281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The aim of this study is to demonstrate the effect of stoichiometry upon characteristics of quercetin-arginine (QCT-Arg) cocrystals.</p><p><strong>Significance: </strong>Quercetin (QCT) is a most abundant flavonoid in vegetables and fruits and has been widely used as an antioxidant. However, its oral bioavailability remains low due to poor aqueous solubility. We illustrate that QCT-Arg cocrystals formulated through an optimized stoichiometry can be a useful approach for its solubilization.</p><p><strong>Method: </strong>Cocrystals were prepared using solvent evaporation method. Characterizations were performed through microscopic, spectroscopic, and thermal techniques. The stoichiometry was confirmed from the binary phase diagram which was prepared using thermograms derived from differential scanning calorimetric experiments.</p><p><strong>Result: </strong>Cocrystal formation was accompanied by the conversion of isotropic phase into anisotropic one. Thread-like cocrystals were formed, regardless of QCT-Arg stoichiometry and solvent's polarity. Spectral analyses suggested that cocrystal structure was held together by hydrogen bonding between QCT and Arg. We ruled out the existence of eutectic mixture based on the observation of two eutectic points in the binary phase diagram.</p><p><strong>Conclusion: </strong>Morphology of cocrystals remained unaffected by the solvent type, stoichiometry and the presence of surfactant. We noticed that the cocrystals could improve the aqueous solubility of QCT.</p>\",\"PeriodicalId\":11263,\"journal\":{\"name\":\"Drug Development and Industrial Pharmacy\",\"volume\":\" \",\"pages\":\"163-172\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development and Industrial Pharmacy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03639045.2024.2306281\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2306281","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Effect of stoichiometry upon the characteristics of quercetin-arginine cocrystals formulated through solution crystallization.
Objective: The aim of this study is to demonstrate the effect of stoichiometry upon characteristics of quercetin-arginine (QCT-Arg) cocrystals.
Significance: Quercetin (QCT) is a most abundant flavonoid in vegetables and fruits and has been widely used as an antioxidant. However, its oral bioavailability remains low due to poor aqueous solubility. We illustrate that QCT-Arg cocrystals formulated through an optimized stoichiometry can be a useful approach for its solubilization.
Method: Cocrystals were prepared using solvent evaporation method. Characterizations were performed through microscopic, spectroscopic, and thermal techniques. The stoichiometry was confirmed from the binary phase diagram which was prepared using thermograms derived from differential scanning calorimetric experiments.
Result: Cocrystal formation was accompanied by the conversion of isotropic phase into anisotropic one. Thread-like cocrystals were formed, regardless of QCT-Arg stoichiometry and solvent's polarity. Spectral analyses suggested that cocrystal structure was held together by hydrogen bonding between QCT and Arg. We ruled out the existence of eutectic mixture based on the observation of two eutectic points in the binary phase diagram.
Conclusion: Morphology of cocrystals remained unaffected by the solvent type, stoichiometry and the presence of surfactant. We noticed that the cocrystals could improve the aqueous solubility of QCT.
期刊介绍:
The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.