评估空间物质分布:在资源管理中采用地理空间熵定义

IF 3.5 Q3 ENGINEERING, ENVIRONMENTAL
Cristina Moyaert, Philippe Nimmegeers, Bilal Mellouk, Dimitri Voordeckers, Paul De Meulenaere and Pieter Billen
{"title":"评估空间物质分布:在资源管理中采用地理空间熵定义","authors":"Cristina Moyaert, Philippe Nimmegeers, Bilal Mellouk, Dimitri Voordeckers, Paul De Meulenaere and Pieter Billen","doi":"10.1039/D3VA00166K","DOIUrl":null,"url":null,"abstract":"<p >Human activity depends on resources that are often consumed without regard for their future availability. Consequently, resources in the form of raw materials and finished products are widely dispersed across society, creating energetic challenges for resource management, since the processes of procuring materials, purifying and processing them, distributing goods, and collecting waste all require significant amounts of energy. The costs and energy requirements for these activities depend on factors such as the mode of transportation and the distance travelled. Efficient transportation strategies can help reduce the negative environmental impact of human activities and ensure the sustainable use of resources for future generations. Quantifying the impact of this transport requires specific and expert logistics management knowledge. The current approach relies on information that is often not readily available, making it impractical and costly. Fast and quantitative methods to support decision making are especially needed when evaluating different potential circular economy (CE) strategies and business models that aim to reduce environmental impact by keeping materials at a high functionality level by closing material cycles (<em>e.g.</em>, through reuse, reparation, refurbishment, remanufacturing, repurposing, recycling or material recovery). As a consequence, in this article, geospatial entropy definitions are studied as novel metrics to quantify the geospatial distribution of resources. The overall goal of this article is to review existing geospatial entropy definitions and evaluate their potential to be applied for assessing resource management strategies in view of a circular economy. In doing so, insight into the decision making behind the location of a value-added activity through a collection and processing of resources is gained, as well as how entropy can be used to support this. To achieve this, we analyse several definitions used in the field of urban sprawling, illustrate how they are calculated using conceptual examples, and translate these to relevant research questions for resource management. This analysis results in several promising definitions, which, in our view, are able to quantify the geospatial distribution of resources accurately. The resulting entropy value can then serve as a proxy for collection efforts. As a result, a viewpoint is presented on how these geospatial entropy definitions can support resource management decisions, such as the appraisal of resource/waste collection schemes and the location of processing and recycling facilities.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d3va00166k?page=search","citationCount":"0","resultStr":"{\"title\":\"Evaluating spatial material distributions: adopting geospatial entropy definitions into resource management†\",\"authors\":\"Cristina Moyaert, Philippe Nimmegeers, Bilal Mellouk, Dimitri Voordeckers, Paul De Meulenaere and Pieter Billen\",\"doi\":\"10.1039/D3VA00166K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Human activity depends on resources that are often consumed without regard for their future availability. Consequently, resources in the form of raw materials and finished products are widely dispersed across society, creating energetic challenges for resource management, since the processes of procuring materials, purifying and processing them, distributing goods, and collecting waste all require significant amounts of energy. The costs and energy requirements for these activities depend on factors such as the mode of transportation and the distance travelled. Efficient transportation strategies can help reduce the negative environmental impact of human activities and ensure the sustainable use of resources for future generations. Quantifying the impact of this transport requires specific and expert logistics management knowledge. The current approach relies on information that is often not readily available, making it impractical and costly. Fast and quantitative methods to support decision making are especially needed when evaluating different potential circular economy (CE) strategies and business models that aim to reduce environmental impact by keeping materials at a high functionality level by closing material cycles (<em>e.g.</em>, through reuse, reparation, refurbishment, remanufacturing, repurposing, recycling or material recovery). As a consequence, in this article, geospatial entropy definitions are studied as novel metrics to quantify the geospatial distribution of resources. The overall goal of this article is to review existing geospatial entropy definitions and evaluate their potential to be applied for assessing resource management strategies in view of a circular economy. In doing so, insight into the decision making behind the location of a value-added activity through a collection and processing of resources is gained, as well as how entropy can be used to support this. To achieve this, we analyse several definitions used in the field of urban sprawling, illustrate how they are calculated using conceptual examples, and translate these to relevant research questions for resource management. This analysis results in several promising definitions, which, in our view, are able to quantify the geospatial distribution of resources accurately. The resulting entropy value can then serve as a proxy for collection efforts. As a result, a viewpoint is presented on how these geospatial entropy definitions can support resource management decisions, such as the appraisal of resource/waste collection schemes and the location of processing and recycling facilities.</p>\",\"PeriodicalId\":72941,\"journal\":{\"name\":\"Environmental science. Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/va/d3va00166k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science. Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/va/d3va00166k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/va/d3va00166k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

人类活动依赖于资源,而资源的消耗往往不考虑其未来的可用性。因此,原材料和制成品形式的资源广泛分散在整个社会中,给资源管理带来了巨大挑战,因为采购材料、净化和加工材料、分配货物和收集废物的过程都需要大量能源。这些活动的成本和能源需求取决于运输方式和运输距离等因素。高效的运输战略有助于减少人类活动对环境的负面影响,确保子孙后代可持续地利用资源。量化这种运输方式的影响需要专业的物流管理知识。目前的方法所依赖的信息往往不是现成的,因此不切实际且成本高昂。因此,本文研究了地理空间熵定义,将其作为量化资源地理空间分布的新指标。在此过程中,我们将深入了解通过收集和处理资源来确定增值活动位置的决策过程,以及如何利用熵来支持这一过程。为此,我们分析了城市无序扩张领域使用的几个定义,用概念性实例说明了如何计算这些定义,并将这些定义转化为资源管理方面的相关研究问题。通过分析,我们得出了几个很有前景的定义,我们认为这些定义能够准确量化资源的地理空间分布。由此得出的熵值可以作为收集工作的代用指标。因此,我们提出了这些地理空间熵定义如何支持资源管理决策的观点,例如资源/废物收集计划的评估以及处理和回收设施的选址。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluating spatial material distributions: adopting geospatial entropy definitions into resource management†

Evaluating spatial material distributions: adopting geospatial entropy definitions into resource management†

Human activity depends on resources that are often consumed without regard for their future availability. Consequently, resources in the form of raw materials and finished products are widely dispersed across society, creating energetic challenges for resource management, since the processes of procuring materials, purifying and processing them, distributing goods, and collecting waste all require significant amounts of energy. The costs and energy requirements for these activities depend on factors such as the mode of transportation and the distance travelled. Efficient transportation strategies can help reduce the negative environmental impact of human activities and ensure the sustainable use of resources for future generations. Quantifying the impact of this transport requires specific and expert logistics management knowledge. The current approach relies on information that is often not readily available, making it impractical and costly. Fast and quantitative methods to support decision making are especially needed when evaluating different potential circular economy (CE) strategies and business models that aim to reduce environmental impact by keeping materials at a high functionality level by closing material cycles (e.g., through reuse, reparation, refurbishment, remanufacturing, repurposing, recycling or material recovery). As a consequence, in this article, geospatial entropy definitions are studied as novel metrics to quantify the geospatial distribution of resources. The overall goal of this article is to review existing geospatial entropy definitions and evaluate their potential to be applied for assessing resource management strategies in view of a circular economy. In doing so, insight into the decision making behind the location of a value-added activity through a collection and processing of resources is gained, as well as how entropy can be used to support this. To achieve this, we analyse several definitions used in the field of urban sprawling, illustrate how they are calculated using conceptual examples, and translate these to relevant research questions for resource management. This analysis results in several promising definitions, which, in our view, are able to quantify the geospatial distribution of resources accurately. The resulting entropy value can then serve as a proxy for collection efforts. As a result, a viewpoint is presented on how these geospatial entropy definitions can support resource management decisions, such as the appraisal of resource/waste collection schemes and the location of processing and recycling facilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信