对 Hermite 算子的 Bochner-riesz 算子换元的加权估计

IF 0.5 4区 数学 Q3 MATHEMATICS
PENG CHEN, XIXI LIN
{"title":"对 Hermite 算子的 Bochner-riesz 算子换元的加权估计","authors":"PENG CHEN, XIXI LIN","doi":"10.1017/s1446788723000368","DOIUrl":null,"url":null,"abstract":"<p>Let <span>H</span> be the Hermite operator <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$-\\Delta +|x|^2$</span></span></img></span></span> on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}^n$</span></span></img></span></span>. We prove a weighted <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$L^2$</span></span></img></span></span> estimate of the maximal commutator operator <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\sup _{R&gt;0}|[b, S_R^\\lambda (H)](f)|$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$ [b, S_R^\\lambda (H)](f) = bS_R^\\lambda (H) f - S_R^\\lambda (H)(bf) $</span></span></img></span></span> is the commutator of a BMO function <span>b</span> and the Bochner–Riesz means <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$S_R^\\lambda (H)$</span></span></img></span></span> for the Hermite operator <span>H</span>. As an application, we obtain the almost everywhere convergence of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$[b, S_R^\\lambda (H)](f)$</span></span></img></span></span> for large <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$f\\in L^p(\\mathbb {R}^n)$</span></span></img></span></span>.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A WEIGHTED ESTIMATE OF COMMUTATORS OF BOCHNER–RIESZ OPERATORS FOR HERMITE OPERATOR\",\"authors\":\"PENG CHEN, XIXI LIN\",\"doi\":\"10.1017/s1446788723000368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>H</span> be the Hermite operator <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$-\\\\Delta +|x|^2$</span></span></img></span></span> on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {R}^n$</span></span></img></span></span>. We prove a weighted <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L^2$</span></span></img></span></span> estimate of the maximal commutator operator <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\sup _{R&gt;0}|[b, S_R^\\\\lambda (H)](f)|$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ [b, S_R^\\\\lambda (H)](f) = bS_R^\\\\lambda (H) f - S_R^\\\\lambda (H)(bf) $</span></span></img></span></span> is the commutator of a BMO function <span>b</span> and the Bochner–Riesz means <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S_R^\\\\lambda (H)$</span></span></img></span></span> for the Hermite operator <span>H</span>. As an application, we obtain the almost everywhere convergence of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[b, S_R^\\\\lambda (H)](f)$</span></span></img></span></span> for large <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda $</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f\\\\in L^p(\\\\mathbb {R}^n)$</span></span></img></span></span>.</p>\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788723000368\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788723000368","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 H 是 $\mathbb {R}^n$ 上的赫米特算子 $-\Delta +|x|^2$ 。我们将证明最大换元算子 $\sup _{R>;0}|[b,S_R^/lambda (H)](f)|$ 其中 $ [b, S_R^\lambda (H)](f) = bS_R^\lambda (H) f - S_R^\lambda (H)(bf) $ 是 BMO 函数 b 的换元子和 Hermite 算子 H 的 Bochner-Riesz means $S_R^/lambda(H)$。作为应用,我们得到了 $[b, S_R^\lambda (H)](f)$ 对于大 $\lambda $ 和 $f\in L^p(\mathbb {R}^n)$ 的几乎无处收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A WEIGHTED ESTIMATE OF COMMUTATORS OF BOCHNER–RIESZ OPERATORS FOR HERMITE OPERATOR

Let H be the Hermite operator $-\Delta +|x|^2$ on $\mathbb {R}^n$. We prove a weighted $L^2$ estimate of the maximal commutator operator $\sup _{R>0}|[b, S_R^\lambda (H)](f)|$, where $ [b, S_R^\lambda (H)](f) = bS_R^\lambda (H) f - S_R^\lambda (H)(bf) $ is the commutator of a BMO function b and the Bochner–Riesz means $S_R^\lambda (H)$ for the Hermite operator H. As an application, we obtain the almost everywhere convergence of $[b, S_R^\lambda (H)](f)$ for large $\lambda $ and $f\in L^p(\mathbb {R}^n)$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信