{"title":"对 Hermite 算子的 Bochner-riesz 算子换元的加权估计","authors":"PENG CHEN, XIXI LIN","doi":"10.1017/s1446788723000368","DOIUrl":null,"url":null,"abstract":"<p>Let <span>H</span> be the Hermite operator <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$-\\Delta +|x|^2$</span></span></img></span></span> on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}^n$</span></span></img></span></span>. We prove a weighted <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$L^2$</span></span></img></span></span> estimate of the maximal commutator operator <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\sup _{R>0}|[b, S_R^\\lambda (H)](f)|$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$ [b, S_R^\\lambda (H)](f) = bS_R^\\lambda (H) f - S_R^\\lambda (H)(bf) $</span></span></img></span></span> is the commutator of a BMO function <span>b</span> and the Bochner–Riesz means <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$S_R^\\lambda (H)$</span></span></img></span></span> for the Hermite operator <span>H</span>. As an application, we obtain the almost everywhere convergence of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$[b, S_R^\\lambda (H)](f)$</span></span></img></span></span> for large <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$f\\in L^p(\\mathbb {R}^n)$</span></span></img></span></span>.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A WEIGHTED ESTIMATE OF COMMUTATORS OF BOCHNER–RIESZ OPERATORS FOR HERMITE OPERATOR\",\"authors\":\"PENG CHEN, XIXI LIN\",\"doi\":\"10.1017/s1446788723000368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>H</span> be the Hermite operator <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$-\\\\Delta +|x|^2$</span></span></img></span></span> on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {R}^n$</span></span></img></span></span>. We prove a weighted <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L^2$</span></span></img></span></span> estimate of the maximal commutator operator <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\sup _{R>0}|[b, S_R^\\\\lambda (H)](f)|$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ [b, S_R^\\\\lambda (H)](f) = bS_R^\\\\lambda (H) f - S_R^\\\\lambda (H)(bf) $</span></span></img></span></span> is the commutator of a BMO function <span>b</span> and the Bochner–Riesz means <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S_R^\\\\lambda (H)$</span></span></img></span></span> for the Hermite operator <span>H</span>. As an application, we obtain the almost everywhere convergence of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[b, S_R^\\\\lambda (H)](f)$</span></span></img></span></span> for large <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda $</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f\\\\in L^p(\\\\mathbb {R}^n)$</span></span></img></span></span>.</p>\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788723000368\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788723000368","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
假设 H 是 $\mathbb {R}^n$ 上的赫米特算子 $-\Delta +|x|^2$ 。我们将证明最大换元算子 $\sup _{R>;0}|[b,S_R^/lambda (H)](f)|$ 其中 $ [b, S_R^\lambda (H)](f) = bS_R^\lambda (H) f - S_R^\lambda (H)(bf) $ 是 BMO 函数 b 的换元子和 Hermite 算子 H 的 Bochner-Riesz means $S_R^/lambda(H)$。作为应用,我们得到了 $[b, S_R^\lambda (H)](f)$ 对于大 $\lambda $ 和 $f\in L^p(\mathbb {R}^n)$ 的几乎无处收敛性。
A WEIGHTED ESTIMATE OF COMMUTATORS OF BOCHNER–RIESZ OPERATORS FOR HERMITE OPERATOR
Let H be the Hermite operator $-\Delta +|x|^2$ on $\mathbb {R}^n$. We prove a weighted $L^2$ estimate of the maximal commutator operator $\sup _{R>0}|[b, S_R^\lambda (H)](f)|$, where $ [b, S_R^\lambda (H)](f) = bS_R^\lambda (H) f - S_R^\lambda (H)(bf) $ is the commutator of a BMO function b and the Bochner–Riesz means $S_R^\lambda (H)$ for the Hermite operator H. As an application, we obtain the almost everywhere convergence of $[b, S_R^\lambda (H)](f)$ for large $\lambda $ and $f\in L^p(\mathbb {R}^n)$.
期刊介绍:
The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred.
Published Bi-monthly
Published for the Australian Mathematical Society