Shiyao Zhou, Yingjie Li, Qinjie Wu, Changyang Gong
{"title":"基于纳米技术的 CRISPR/Cas9 传递系统用于癌症治疗中的基因组编辑","authors":"Shiyao Zhou, Yingjie Li, Qinjie Wu, Changyang Gong","doi":"10.1002/mba2.70","DOIUrl":null,"url":null,"abstract":"<p>The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (CRISPR/Cas9) systems initiate a revolution in genome editing, which have a significant potential for treating cancer. A significant amount of research has been conducted regarding genetic modification using CRISPR/Cas9 systems, and 33 clinical trials using ex vivo or in vivo CRISPR/Cas9 gene editing techniques have been carried out to treat cancer. Despite its potential advantages, the main obstacle to convert CRISPR/Cas9 technology into clinical genome editing applications is the safe and efficient transport of genetic material owing to various extra- and intracellular biological hurdles. We outline the characteristics of three forms of CRISPR/Cas9 cargos, plasmids, mRNA/sgRNA, and ribonucleoprotein (RNP) complexes in this review. The recent in vivo nanotechnology-based delivery techniques for these three categories to treat cancer are then reviewed. In the end, we outline the prerequisites for effective and secure in vivo CRISPR/Cas9 delivery in clinical contexts and discuss challenges with current nanocarriers. This review offers a thorough overview of the CRISPR/Cas9 nano-delivery system for the treatment of cancer, serving as a resource for the design and building of CRISPR/Cas9 delivery systems and offering fresh perspectives on the treatment of tumors.</p>","PeriodicalId":100901,"journal":{"name":"MedComm – Biomaterials and Applications","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mba2.70","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology-based CRISPR/Cas9 delivery system for genome editing in cancer treatment\",\"authors\":\"Shiyao Zhou, Yingjie Li, Qinjie Wu, Changyang Gong\",\"doi\":\"10.1002/mba2.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (CRISPR/Cas9) systems initiate a revolution in genome editing, which have a significant potential for treating cancer. A significant amount of research has been conducted regarding genetic modification using CRISPR/Cas9 systems, and 33 clinical trials using ex vivo or in vivo CRISPR/Cas9 gene editing techniques have been carried out to treat cancer. Despite its potential advantages, the main obstacle to convert CRISPR/Cas9 technology into clinical genome editing applications is the safe and efficient transport of genetic material owing to various extra- and intracellular biological hurdles. We outline the characteristics of three forms of CRISPR/Cas9 cargos, plasmids, mRNA/sgRNA, and ribonucleoprotein (RNP) complexes in this review. The recent in vivo nanotechnology-based delivery techniques for these three categories to treat cancer are then reviewed. In the end, we outline the prerequisites for effective and secure in vivo CRISPR/Cas9 delivery in clinical contexts and discuss challenges with current nanocarriers. This review offers a thorough overview of the CRISPR/Cas9 nano-delivery system for the treatment of cancer, serving as a resource for the design and building of CRISPR/Cas9 delivery systems and offering fresh perspectives on the treatment of tumors.</p>\",\"PeriodicalId\":100901,\"journal\":{\"name\":\"MedComm – Biomaterials and Applications\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mba2.70\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm – Biomaterials and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mba2.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm – Biomaterials and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mba2.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanotechnology-based CRISPR/Cas9 delivery system for genome editing in cancer treatment
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (CRISPR/Cas9) systems initiate a revolution in genome editing, which have a significant potential for treating cancer. A significant amount of research has been conducted regarding genetic modification using CRISPR/Cas9 systems, and 33 clinical trials using ex vivo or in vivo CRISPR/Cas9 gene editing techniques have been carried out to treat cancer. Despite its potential advantages, the main obstacle to convert CRISPR/Cas9 technology into clinical genome editing applications is the safe and efficient transport of genetic material owing to various extra- and intracellular biological hurdles. We outline the characteristics of three forms of CRISPR/Cas9 cargos, plasmids, mRNA/sgRNA, and ribonucleoprotein (RNP) complexes in this review. The recent in vivo nanotechnology-based delivery techniques for these three categories to treat cancer are then reviewed. In the end, we outline the prerequisites for effective and secure in vivo CRISPR/Cas9 delivery in clinical contexts and discuss challenges with current nanocarriers. This review offers a thorough overview of the CRISPR/Cas9 nano-delivery system for the treatment of cancer, serving as a resource for the design and building of CRISPR/Cas9 delivery systems and offering fresh perspectives on the treatment of tumors.