Cornelius Gauckler , Gints Kucinskis , Lukas Fridolin Pfeiffer , Abdelaziz A. Abdellatif , Yushu Tang , Christian Kübel , Fabio Maroni , Ruihao Gong , Margret Wohlfahrt-Mehrens , Peter Axmann , Mario Marinaro
{"title":"用于钠离子电池的氧化镁涂层 P2-Na0.67Mn0.75Ni0.25O2 层状氧化物阴极","authors":"Cornelius Gauckler , Gints Kucinskis , Lukas Fridolin Pfeiffer , Abdelaziz A. Abdellatif , Yushu Tang , Christian Kübel , Fabio Maroni , Ruihao Gong , Margret Wohlfahrt-Mehrens , Peter Axmann , Mario Marinaro","doi":"10.1016/j.powera.2024.100135","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we propose an effective strategy to improve the electrochemical performance of a P2-Na<sub>0.67</sub>Mn<sub>0.75</sub>Ni<sub>0.25</sub>O<sub>2</sub> (P2-MNO) cathode material for Na-ion batteries based on MgO surface coating. The MgO coating, with a thickness of ∼20–50 nm, is obtained by means of a facile wet-chemistry approach followed by heat treatment carried out at comparatively low temperatures (400–500 °C) in order to avoid possible Mg doping in the bulk of the P2-MNO. Detailed electrochemical investigations demonstrate improved electrochemical performance of the MgO-coated material (M-P2-MNO) in comparison to pristine bare one at both room and elevated (40 °C) temperatures. <em>Operando</em> differential electrochemical mass spectroscopy (DEMS) demonstrate that the MgO coating is effective in suppressing unwanted gas evolution due to side reactions thus stabilizing the cathode/electrolyte interface.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000015/pdfft?md5=cc187801898b4e554c910f6ef3bafceb&pid=1-s2.0-S2666248524000015-main.pdf","citationCount":"0","resultStr":"{\"title\":\"MgO coated P2-Na0.67Mn0.75Ni0.25O2 layered oxide cathode for Na-Ion batteries\",\"authors\":\"Cornelius Gauckler , Gints Kucinskis , Lukas Fridolin Pfeiffer , Abdelaziz A. Abdellatif , Yushu Tang , Christian Kübel , Fabio Maroni , Ruihao Gong , Margret Wohlfahrt-Mehrens , Peter Axmann , Mario Marinaro\",\"doi\":\"10.1016/j.powera.2024.100135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we propose an effective strategy to improve the electrochemical performance of a P2-Na<sub>0.67</sub>Mn<sub>0.75</sub>Ni<sub>0.25</sub>O<sub>2</sub> (P2-MNO) cathode material for Na-ion batteries based on MgO surface coating. The MgO coating, with a thickness of ∼20–50 nm, is obtained by means of a facile wet-chemistry approach followed by heat treatment carried out at comparatively low temperatures (400–500 °C) in order to avoid possible Mg doping in the bulk of the P2-MNO. Detailed electrochemical investigations demonstrate improved electrochemical performance of the MgO-coated material (M-P2-MNO) in comparison to pristine bare one at both room and elevated (40 °C) temperatures. <em>Operando</em> differential electrochemical mass spectroscopy (DEMS) demonstrate that the MgO coating is effective in suppressing unwanted gas evolution due to side reactions thus stabilizing the cathode/electrolyte interface.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666248524000015/pdfft?md5=cc187801898b4e554c910f6ef3bafceb&pid=1-s2.0-S2666248524000015-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248524000015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248524000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
MgO coated P2-Na0.67Mn0.75Ni0.25O2 layered oxide cathode for Na-Ion batteries
In this study, we propose an effective strategy to improve the electrochemical performance of a P2-Na0.67Mn0.75Ni0.25O2 (P2-MNO) cathode material for Na-ion batteries based on MgO surface coating. The MgO coating, with a thickness of ∼20–50 nm, is obtained by means of a facile wet-chemistry approach followed by heat treatment carried out at comparatively low temperatures (400–500 °C) in order to avoid possible Mg doping in the bulk of the P2-MNO. Detailed electrochemical investigations demonstrate improved electrochemical performance of the MgO-coated material (M-P2-MNO) in comparison to pristine bare one at both room and elevated (40 °C) temperatures. Operando differential electrochemical mass spectroscopy (DEMS) demonstrate that the MgO coating is effective in suppressing unwanted gas evolution due to side reactions thus stabilizing the cathode/electrolyte interface.