{"title":"癫痫预后预测模型。","authors":"Shehryar Sheikh, Lara Jehi","doi":"10.1097/WCO.0000000000001241","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Multiple complex medical decisions are necessary in the course of a chronic disease like epilepsy. Predictive tools to assist physicians and patients in navigating this complexity have emerged as a necessity and are summarized in this review.</p><p><strong>Recent findings: </strong>Nomograms and online risk calculators are user-friendly and offer individualized predictions for outcomes ranging from safety of antiseizure medication withdrawal (accuracy 65-73%) to seizure-freedom, naming, mood, and language outcomes of resective epilepsy surgery (accuracy 72-81%). Improving their predictive performance is limited by the nomograms' inability to ingest complex data inputs. Conversely, machine learning offers the potential of multimodal and expansive model inputs achieving human-expert level accuracy in automated scalp electroencephalogram (EEG) interpretation but lagging in predictive performance or requiring validation for other applications.</p><p><strong>Summary: </strong>Good to excellent predictive models are now available to guide medical and surgical epilepsy decision-making with nomograms offering individualized predictions and user-friendly tools, and machine learning approaches offering the potential of improved performance. Future research is necessary to bridge the two approaches for optimal translation to clinical care.</p>","PeriodicalId":11059,"journal":{"name":"Current Opinion in Neurology","volume":" ","pages":"115-120"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive models of epilepsy outcomes.\",\"authors\":\"Shehryar Sheikh, Lara Jehi\",\"doi\":\"10.1097/WCO.0000000000001241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Multiple complex medical decisions are necessary in the course of a chronic disease like epilepsy. Predictive tools to assist physicians and patients in navigating this complexity have emerged as a necessity and are summarized in this review.</p><p><strong>Recent findings: </strong>Nomograms and online risk calculators are user-friendly and offer individualized predictions for outcomes ranging from safety of antiseizure medication withdrawal (accuracy 65-73%) to seizure-freedom, naming, mood, and language outcomes of resective epilepsy surgery (accuracy 72-81%). Improving their predictive performance is limited by the nomograms' inability to ingest complex data inputs. Conversely, machine learning offers the potential of multimodal and expansive model inputs achieving human-expert level accuracy in automated scalp electroencephalogram (EEG) interpretation but lagging in predictive performance or requiring validation for other applications.</p><p><strong>Summary: </strong>Good to excellent predictive models are now available to guide medical and surgical epilepsy decision-making with nomograms offering individualized predictions and user-friendly tools, and machine learning approaches offering the potential of improved performance. Future research is necessary to bridge the two approaches for optimal translation to clinical care.</p>\",\"PeriodicalId\":11059,\"journal\":{\"name\":\"Current Opinion in Neurology\",\"volume\":\" \",\"pages\":\"115-120\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WCO.0000000000001241\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WCO.0000000000001241","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Purpose of review: Multiple complex medical decisions are necessary in the course of a chronic disease like epilepsy. Predictive tools to assist physicians and patients in navigating this complexity have emerged as a necessity and are summarized in this review.
Recent findings: Nomograms and online risk calculators are user-friendly and offer individualized predictions for outcomes ranging from safety of antiseizure medication withdrawal (accuracy 65-73%) to seizure-freedom, naming, mood, and language outcomes of resective epilepsy surgery (accuracy 72-81%). Improving their predictive performance is limited by the nomograms' inability to ingest complex data inputs. Conversely, machine learning offers the potential of multimodal and expansive model inputs achieving human-expert level accuracy in automated scalp electroencephalogram (EEG) interpretation but lagging in predictive performance or requiring validation for other applications.
Summary: Good to excellent predictive models are now available to guide medical and surgical epilepsy decision-making with nomograms offering individualized predictions and user-friendly tools, and machine learning approaches offering the potential of improved performance. Future research is necessary to bridge the two approaches for optimal translation to clinical care.
期刊介绍:
Current Opinion in Neurology is a highly regarded journal offering insightful editorials and on-the-mark invited reviews; covering key subjects such as cerebrovascular disease, developmental disorders, neuroimaging and demyelinating diseases. Published bimonthly, each issue of Current Opinion in Neurology introduces world renowned guest editors and internationally recognized academics within the neurology field, delivering a widespread selection of expert assessments on the latest developments from the most recent literature.